IDEAS home Printed from https://ideas.repec.org/p/zbw/irtgdp/2021022.html
   My bibliography  Save this paper

A financial risk meter for China

Author

Listed:
  • Wang, Ruting
  • Althof, Michael
  • Härdle, Wolfgang

Abstract

This paper develops a new risk meter specifically for China - FRM@China - to detect systemic financial risk as well as tail-event (TE) dependencies among major financial institutions (FIs). Compared with the CBOE FIX VIX, which is currently the most popular financial risk measure, FRM@China has less noise. It also emitted a risk signature much earlier than the CBOE FIX VIX index in the 2020 COVID pandemic. In addition, FRM@China uses a single quantile-lasso regression model to allow both the assessment of risk transfer between different sectors in which FIs operate and the prediction of systemic risk. Because the risk indicator in FRM@China is based on penalization terms, its relationship with macro variables are unknown and non-linear. This paper further expands the existing FRM approach by using Shapley values to identify the dynamic contribution of different macro features in this type of "black box" situation. The results show that short-term interest rates and forward guidance are significant risk drivers. This paper considers the interaction among FIs from mainland China, Hong Kong and Taiwan to provide an enhanced regional tool set for regulators to evaluate financial policy responses. All quantlets are available on quantlet.com.

Suggested Citation

  • Wang, Ruting & Althof, Michael & Härdle, Wolfgang, 2021. "A financial risk meter for China," IRTG 1792 Discussion Papers 2021-022, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  • Handle: RePEc:zbw:irtgdp:2021022
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/248438/1/178208584X.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ben S. Bernanke & Kenneth N. Kuttner, 2005. "What Explains the Stock Market's Reaction to Federal Reserve Policy?," Journal of Finance, American Finance Association, vol. 60(3), pages 1221-1257, June.
    2. Georgiadis, Georgios, 2016. "Determinants of global spillovers from US monetary policy," Journal of International Money and Finance, Elsevier, vol. 67(C), pages 41-61.
    3. Viral V. Acharya & Lasse H. Pedersen & Thomas Philippon & Matthew Richardson, 2017. "Measuring Systemic Risk," The Review of Financial Studies, Society for Financial Studies, vol. 30(1), pages 2-47.
    4. Huo, Rui & Ahmed, Abdullahi D., 2017. "Return and volatility spillovers effects: Evaluating the impact of Shanghai-Hong Kong Stock Connect," Economic Modelling, Elsevier, vol. 61(C), pages 260-272.
    5. Zhang, Dayong & Hu, Min & Ji, Qiang, 2020. "Financial markets under the global pandemic of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    6. Stefano Ramelli & Alexander F Wagner, 2020. "Feverish Stock Price Reactions to COVID-19," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 9(3), pages 622-655.
    7. Battiston, Stefano & Delli Gatti, Domenico & Gallegati, Mauro & Greenwald, Bruce & Stiglitz, Joseph E., 2012. "Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1121-1141.
    8. Bluhm, Marcel & Krahnen, Jan Pieter, 2014. "Systemic risk in an interconnected banking system with endogenous asset markets," Journal of Financial Stability, Elsevier, vol. 13(C), pages 75-94.
    9. Wang, Gang-Jin & Xie, Chi & Zhao, Longfeng & Jiang, Zhi-Qiang, 2018. "Volatility connectedness in the Chinese banking system: Do state-owned commercial banks contribute more?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 57(C), pages 205-230.
    10. Rigobon, Roberto & Sack, Brian, 2004. "The impact of monetary policy on asset prices," Journal of Monetary Economics, Elsevier, vol. 51(8), pages 1553-1575, November.
    11. Syriopoulos, Theodore & Makram, Beljid & Boubaker, Adel, 2015. "Stock market volatility spillovers and portfolio hedging: BRICS and the financial crisis," International Review of Financial Analysis, Elsevier, vol. 39(C), pages 7-18.
    12. Eun, Cheol S. & Shim, Sangdal, 1989. "International Transmission of Stock Market Movements," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(2), pages 241-256, June.
    13. Ben Amor, Souhir & Althof, Michael & Härdle, Wolfgang Karl, 2021. "FRM Financial Risk Meter for Emerging Markets," IRTG 1792 Discussion Papers 2021-002, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    14. Thorbecke, Willem, 1997. "On Stock Market Returns and Monetary Policy," Journal of Finance, American Finance Association, vol. 52(2), pages 635-654, June.
    15. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    16. Freixas, Xavier & Parigi, Bruno M & Rochet, Jean-Charles, 2000. "Systemic Risk, Interbank Relations, and Liquidity Provision by the Central Bank," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 32(3), pages 611-638, August.
    17. Franklin Allen & Douglas Gale, 2004. "Financial Intermediaries and Markets," Econometrica, Econometric Society, vol. 72(4), pages 1023-1061, July.
    18. Lu Fang & David A. Bessler, 2018. "Is it China that leads the Asian stock market contagion in 2015?," Applied Economics Letters, Taylor & Francis Journals, vol. 25(11), pages 752-757, June.
    19. Stefano Ramelli & Alexander F Wagner, 0. "Feverish Stock Price Reactions to COVID-19," Review of Corporate Finance Studies, Oxford University Press, vol. 9(3), pages 622-655.
    20. Bagliano, Fabio C. & Morana, Claudio, 2012. "The Great Recession: US dynamics and spillovers to the world economy," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 1-13.
    21. Yuan, Ming, 2006. "GACV for quantile smoothing splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 813-829, February.
    22. Rizwan, Muhammad Suhail & Ahmad, Ghufran & Ashraf, Dawood, 2020. "Systemic risk: The impact of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    23. Cai, Jian & Eidam, Frederik & Saunders, Anthony & Steffen, Sascha, 2018. "Syndication, interconnectedness, and systemic risk," Journal of Financial Stability, Elsevier, vol. 34(C), pages 105-120.
    24. Ren, Rui & Althof, Michael & Härdle, Wolfgang Karl, 2020. "Tail Risk Network Effects in the Cryptocurrency Market during the COVID-19 Crisis," IRTG 1792 Discussion Papers 2020-028, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ruting & Althof, Michael & Härdle, Wolfgang Karl, 2023. "A financial risk meter for China," Emerging Markets Review, Elsevier, vol. 56(C).
    2. Ricardo J. Caballero & Alp Simsek, 2024. "Monetary Policy and Asset Price Overshooting: A Rationale for the Wall/Main Street Disconnect," Journal of Finance, American Finance Association, vol. 79(3), pages 1719-1753, June.
    3. Ren, Rui & Lu, Meng-Jou & Li, Yingxing & Härdle, Wolfgang Karl, 2022. "Financial Risk Meter FRM based on Expectiles," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    4. Silva, Walmir & Kimura, Herbert & Sobreiro, Vinicius Amorim, 2017. "An analysis of the literature on systemic financial risk: A survey," Journal of Financial Stability, Elsevier, vol. 28(C), pages 91-114.
    5. Huynh, Toan Luu Duc & Foglia, Matteo & Doukas, John A., 2022. "COVID-19 and Tail-event Driven Network Risk in the Eurozone," Finance Research Letters, Elsevier, vol. 44(C).
    6. Morelli, David & Vioto, Davide, 2020. "Assessing the contribution of China’s financial sectors to systemic risk," Journal of Financial Stability, Elsevier, vol. 50(C).
    7. Ellis, Scott & Sharma, Satish & Brzeszczyński, Janusz, 2022. "Systemic risk measures and regulatory challenges," Journal of Financial Stability, Elsevier, vol. 61(C).
    8. Yarovaya, Larisa & Brzeszczyński, Janusz & Goodell, John W. & Lucey, Brian & Lau, Chi Keung Marco, 2022. "Rethinking financial contagion: Information transmission mechanism during the COVID-19 pandemic," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    9. Jean-Baptiste Hasse, 2022. "Systemic risk: a network approach," Empirical Economics, Springer, vol. 63(1), pages 313-344, July.
    10. Foglia, Matteo & Addi, Abdelhamid & Angelini, Eliana, 2022. "The Eurozone banking sector in the time of COVID-19: Measuring volatility connectedness," Global Finance Journal, Elsevier, vol. 51(C).
    11. Jean-Baptiste Hasse, 2020. "Systemic Risk: a Network Approach," Working Papers halshs-02893780, HAL.
    12. Foglia, Matteo & Addi, Abdelhamid & Wang, Gang-Jin & Angelini, Eliana, 2022. "Bearish Vs Bullish risk network: A Eurozone financial system analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).
    13. Tarchella, Salma & Dhaoui, Abderrazak, 2021. "Chinese jigsaw: Solving the equity market response to the COVID-19 crisis: Do alternative asset provide effective hedging performance?," Research in International Business and Finance, Elsevier, vol. 58(C).
    14. Irfan Akbar Kazi & Hakimzadi Wagan & Farhan Akbar, 2012. "The changing international transmission of US monetary policy shocks: is there evidence of contagion effect on OECD countries," Working Papers hal-04141067, HAL.
    15. Crespo Cuaresma, Jesus & Doppelhofer, Gernot & Feldkircher, Martin & Huber, Florian, 2018. "Spillovers from US monetary policy: Evidence from a time-varying parameter GVAR model," Discussion Paper Series in Economics 31/2018, Norwegian School of Economics, Department of Economics.
    16. Harjoto, Maretno Agus & Rossi, Fabrizio & Lee, Robert & Sergi, Bruno S., 2021. "How do equity markets react to COVID-19? Evidence from emerging and developed countries," Journal of Economics and Business, Elsevier, vol. 115(C).
    17. Fang, Libing & Sun, Boyang & Li, Huijing & Yu, Honghai, 2018. "Systemic risk network of Chinese financial institutions," Emerging Markets Review, Elsevier, vol. 35(C), pages 190-206.
    18. Manel Youssef & Khaled Mokni & Ahdi Noomen Ajmi, 2021. "Dynamic connectedness between stock markets in the presence of the COVID-19 pandemic: does economic policy uncertainty matter?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    19. Müller, Fernanda Maria & Santos, Samuel Solgon & Righi, Marcelo Brutti, 2023. "A description of the COVID-19 outbreak role in financial risk forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 66(C).
    20. Iwanicz-Drozdowska, Małgorzata & Rogowicz, Karol & Kurowski, Łukasz & Smaga, Paweł, 2021. "Two decades of contagion effect on stock markets: Which events are more contagious?," Journal of Financial Stability, Elsevier, vol. 55(C).

    More about this item

    Keywords

    FRM (Financial Risk Meter); Lasso Quantile Regression; Financial Network; China; Shapley value;
    All these keywords.

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:irtgdp:2021022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/wfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.