IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9946.html
   My bibliography  Save this article

Global biomass production potentials exceed expected future demand without the need for cropland expansion

Author

Listed:
  • Wolfram Mauser

    (Ludwig-Maximilians-University)

  • Gernot Klepper

    (Kiel Institute for the World Economy)

  • Florian Zabel

    (Ludwig-Maximilians-University)

  • Ruth Delzeit

    (Kiel Institute for the World Economy)

  • Tobias Hank

    (Ludwig-Maximilians-University)

  • Birgitta Putzenlechner

    (Ludwig-Maximilians-University)

  • Alvaro Calzadilla

    (Kiel Institute for the World Economy)

Abstract

Global biomass demand is expected to roughly double between 2005 and 2050. Current studies suggest that agricultural intensification through optimally managed crops on today’s cropland alone is insufficient to satisfy future demand. In practice though, improving crop growth management through better technology and knowledge almost inevitably goes along with (1) improving farm management with increased cropping intensity and more annual harvests where feasible and (2) an economically more efficient spatial allocation of crops which maximizes farmers’ profit. By explicitly considering these two factors we show that, without expansion of cropland, today’s global biomass potentials substantially exceed previous estimates and even 2050s’ demands. We attribute 39% increase in estimated global production potentials to increasing cropping intensities and 30% to the spatial reallocation of crops to their profit-maximizing locations. The additional potentials would make cropland expansion redundant. Their geographic distribution points at possible hotspots for future intensification.

Suggested Citation

  • Wolfram Mauser & Gernot Klepper & Florian Zabel & Ruth Delzeit & Tobias Hank & Birgitta Putzenlechner & Alvaro Calzadilla, 2015. "Global biomass production potentials exceed expected future demand without the need for cropland expansion," Nature Communications, Nature, vol. 6(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9946
    DOI: 10.1038/ncomms9946
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9946
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9946?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Qiangyi & Xiang, Mingtao & Sun, Zhanli & Wu, Wenbin, 2021. "The complexity of measuring cropland use intensity: An empirical study," Agricultural Systems, Elsevier, vol. 192(C).
    2. Qin, Zhangcai & Zhuang, Qianlai & Cai, Ximing & He, Yujie & Huang, Yao & Jiang, Dong & Lin, Erda & Liu, Yaling & Tang, Ya & Wang, Michael Q., 2018. "Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2387-2400.
    3. Srivastava, Amit Kumar & Mboh, Cho Miltin & Gaiser, Thomas & Kuhn, Arnim & Ermias, Engida & Ewert, Frank, 2019. "Effect of mineral fertilizer on rain water and radiation use efficiencies for maize yield and stover biomass productivity in Ethiopia," Agricultural Systems, Elsevier, vol. 168(C), pages 88-100.
    4. Ruth Delzeit & Robert Beach & Ruben Bibas & Wolfgang Britz & Jean Chateau & Florian Freund & Julien Lefevre & Franziska Schuenemann & Timothy Sulser & Hugo Valin & Bas van Ruijven & Matthias Weitzel &, 2020. "Linking Global CGE Models with Sectoral Models to Generate Baseline Scenarios: Approaches, Challenges, and Opportunities," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 162-195, June.
    5. Shinichiro Fujimori & Toshichika Iizumi & Tomoko Hasegawa & Jun’ya Takakura & Kiyoshi Takahashi & Yasuaki Hijioka, 2018. "Macroeconomic Impacts of Climate Change Driven by Changes in Crop Yields," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
    6. Ke, Xinli & Chen, Jing & Zuo, Chengchao & Wang, Xiaoqian, 2024. "The cropland intensive utilisation transition in China: An induced factor substitution perspective," Land Use Policy, Elsevier, vol. 141(C).
    7. Sabin Shrestha & Janaki Mahat, 2022. "Sustainable Food Security: How To Feed An Increasing Population? A Review," INWASCON Technology Magazine(i-TECH MAG), Zibeline International Publishing, vol. 4, pages 15-18, April.
    8. Delzeit, Ruth & Heimann, Tobias & Schünemann, Franziska & Söder, Mareike, 2021. "Scenarios for an impact assessment of global bioeconomy strategies: Results from a co-design process," Kiel Working Papers 2188, Kiel Institute for the World Economy (IfW Kiel).
    9. Cailong Xu & Ruidong Li & Wenwen Song & Tingting Wu & Shi Sun & Shuixiu Hu & Tianfu Han & Cunxiang Wu, 2021. "Responses of Branch Number and Yield Component of Soybean Cultivars Tested in Different Planting Densities," Agriculture, MDPI, vol. 11(1), pages 1-12, January.
    10. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    11. Ayyad, Saher & Karimi, Poolad & Langensiepen, Matthias & Ribbe, Lars & Rebelo, Lisa-Maria & Becker, Mathias, 2022. "Remote sensing assessment of available green water to increase crop production in seasonal floodplain wetlands of sub-Saharan Africa," Agricultural Water Management, Elsevier, vol. 269(C).
    12. Ruth Delzeit & Roberto Beach & Ruben Bibas & Wolfgang Britz & Jean Chateau & Florian Freund & Julien Lefevre & Franziska Schuenemann & Timothy Sulser & Hugo Valin & Bas van Ruijven & Matthias Weitzel , 2020. "Linking global CGE models with sectoral models to generate baseline scenarios: Approaches, opportunities and pitfalls," Post-Print hal-03128285, HAL.
    13. Yibo Luan & Wenquan Zhu & Xuefeng Cui & Günther Fischer & Terence P. Dawson & Peijun Shi & Zhenke Zhang, 2019. "Cropland yield divergence over Africa and its implication for mitigating food insecurity," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 707-734, June.
    14. Delzeit, Ruth & Sipangule, Kacana & Thiele, Rainer, 2015. "Achieving food security in the face of climate change," PEGNet Policy Briefs 2/2015, PEGNet - Poverty Reduction, Equity and Growth Network, Kiel Institute for the World Economy (IfW Kiel).
    15. Azeb W. Degife & Florian Zabel & Wolfram Mauser, 2019. "Land Use Scenarios and Their Effect on Potential Crop Production: The Case of Gambella Region, Ethiopia," Agriculture, MDPI, vol. 9(5), pages 1-17, May.
    16. Huey-Lin Lee & Yu-Pin Lin & Joy R. Petway, 2018. "Global Agricultural Trade Pattern in A Warming World: Regional Realities," Sustainability, MDPI, vol. 10(8), pages 1-21, August.
    17. Holzapfel, Sarah & Brüntrup, Michael, 2017. "SDG 2 (kein Hunger) in der Deutschen Nachhaltigkeitsstrategie: lassen wir die Hungernden zurück?," Analysen und Stellungnahmen 11/2017, German Institute of Development and Sustainability (IDOS).
    18. Bernd Hansjürgens & Andreas Lienkamp & Stefan Möckel, 2018. "Justifying Soil Protection and Sustainable Soil Management: Creation-Ethical, Legal and Economic Considerations," Sustainability, MDPI, vol. 10(10), pages 1-12, October.
    19. Holzapfel, Sarah & Brüntrup, Michael, 2017. "SDG 2 (Zero Hunger) in the context of the German Sustainable Development Strategy: are we leaving the starving behind?," Briefing Papers 13/2017, German Institute of Development and Sustainability (IDOS).
    20. Qiming Zheng & Tim Ha & Alexander V. Prishchepov & Yiwen Zeng & He Yin & Lian Pin Koh, 2023. "The neglected role of abandoned cropland in supporting both food security and climate change mitigation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    21. Yu, Qiangyi & Wu, Wenbin & You, Liangzhi & Zhu, Tingju & van Vliet, Jasper & Verburg, Peter H. & Liu, Zhenhuan & Li, Zhengguo & Yang, Peng & Zhou, Qingbo & Tang, Huajun, 2017. "Assessing the harvested area gap in China," Agricultural Systems, Elsevier, vol. 153(C), pages 212-220.
    22. Martin Henseler & Ruth Delzeit & Marcel Adenäuer & Sarah Baum & Peter Kreins, 2020. "Nitrogen Tax and Set-Aside as Greenhouse Gas Abatement Policies Under Global Change Scenarios: A Case Study for Germany," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(2), pages 299-329, July.
    23. Kotir, Julius H. & Bell, Lindsay W. & Kirkegaard, John A. & Whish, Jeremy & Aikins, Kojo Atta, 2022. "Labour demand – The forgotten input influencing the execution and adoptability of alternative cropping systems in Eastern Australia," Agricultural Systems, Elsevier, vol. 203(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.