IDEAS home Printed from https://ideas.repec.org/p/zbw/ifwkwp/1316.html
   My bibliography  Save this paper

Production Functions for Climate Policy Modeling: An Empirical Analysis

Author

Listed:
  • van der Werf, Edwin

Abstract

Quantitative models for climate policy modeling differ in the production structure used and in the sizes of the elasticities of substitution. The empirical foundation for both is generally lacking. This paper estimates the parameters of two-level CES production functions with capital, labour and energy as inputs, and is the first to systematically compare all nesting structures. Using industry-level data from 12 OECD countries, we find that the nesting structure where capital and labour are combined first, fits the data best, but for most countries and industries we cannot reject that all three inputs can be put into one single nest. These two nesting structures are used by most climate models. However, while several climate policy models use a Cobb-Douglas function for (part of the) production function, we reject elasticities equal to one, in favour of considerably smaller values. Finally we find evidence for factor-specific technological change. With lower elasticities and with factor-specific technological change, some climate policy models may find a bigger effect of endogenous technological change on mitigating the costs of climate policy.

Suggested Citation

  • van der Werf, Edwin, 2007. "Production Functions for Climate Policy Modeling: An Empirical Analysis," Kiel Working Papers 1316, Kiel Institute for the World Economy (IfW Kiel).
  • Handle: RePEc:zbw:ifwkwp:1316
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/17841/1/kap1316.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emanuele Massetti & Lea Nicita, 2010. "The Optimal Climate Policy Portfolio when Knowledge Spills across Sectors," CESifo Working Paper Series 2988, CESifo.
    2. CARRARO Carlo & MASSETTI Emanuele & NICITA Lea, 2010. "How Does Climate Policy Affect Technical Change? ?An Analysis of the Direction and Pace of Technical Progress in a Climate-Economy Model (Fondazione Eni Enrico Mattei)," ESRI Discussion paper series 229, Economic and Social Research Institute (ESRI).
    3. Maurizio Ciaschini & Rosita Pretaroli & Francesca Severini & Claudio Socci, 2013. "Environmental tax and regional government consumption expenditure in a fiscal federalism system," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(2), pages 129-152.
    4. Roolfs, Christina & Gaitan Soto, Beatriz & Edenhofer, Ottmar & Lessmann, Kai, 2021. "Technology Beats Capital -- Sharing the Carbon Price Burden in Federal Europe," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242381, Verein für Socialpolitik / German Economic Association.
    5. Adriana Marcucci & Lin Zhang, 2019. "Growth impacts of Swiss steering-based climate policies," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-13, December.
    6. Lucas Bretschger & Lin Zhang, 2014. "Going beyond tradition: Carbon policy in a high-growth economy: The case of China," CER-ETH Economics working paper series 14/201, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    7. Dean M. Hanink, 2010. "Perspectives on Regional Change: A Review Essay on Handbook of Regional Growth and Development Theories," Growth and Change, Wiley Blackwell, vol. 41(1), pages 3-27, March.
    8. Hübler, Michael, 2011. "Technology diffusion under contraction and convergence: A CGE analysis of China," Energy Economics, Elsevier, vol. 33(1), pages 131-142, January.
    9. Ruslana Palatnik & Mordechai Shechter, 2008. "Can Climate Change Mitigation Policy Benefit the Israeli Economy? A Computable General Equilibrium Analysis," Working Papers 2008.2, Fondazione Eni Enrico Mattei.
    10. Bretschger, Lucas & Zhang, Lin, 2017. "Carbon policy in a high-growth economy: The case of China," Resource and Energy Economics, Elsevier, vol. 47(C), pages 1-19.
    11. Hübler, Michael, 2009. "Energy saving technology diffusion via FDI and trade: a CGE model of China," Kiel Working Papers 1479, Kiel Institute for the World Economy (IfW Kiel).
    12. Curran, Louise, 2008. "Unravelling the textiles trade: How accurate were GTAP models in predicting the impact of the end of the MFA?," Conference papers 331796, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. M. Chepeliev, 2015. "Econometric estimation of capital-labor substitution elasticities for Ukrainian CGE model," Economy and Forecasting, Valeriy Heyets, issue 2, pages 33-46.
    14. Ramón López & Sang Won Yoon, 2013. "Sustainable Economic Growth: Structural Transformation with Consumption Flexibility," Working Papers wp375, University of Chile, Department of Economics.
    15. Maciej Bukowski & Pawel Kowal, 2010. "Large scale, multi-sector DSGE model as a climate policy assessment tool - Macroeconomic Mitigation Options (MEMO) model for Poland," IBS Working Papers 3/2010, Instytut Badan Strukturalnych.
    16. Schubert, Stefan F., 2014. "Dynamic Effects Of Oil Price Shocks And Their Impact On The Current Account," Macroeconomic Dynamics, Cambridge University Press, vol. 18(2), pages 316-337, March.
    17. Nguyen Ngoc Thach, 2020. "How to Explain When the ES Is Lower Than One? A Bayesian Nonlinear Mixed-Effects Approach," JRFM, MDPI, vol. 13(2), pages 1-17, February.
    18. Eisenack, Klaus & Edenhofer, Ottmar & Kalkuhl, Matthias, 2012. "Resource rents: The effects of energy taxes and quantity instruments for climate protection," Energy Policy, Elsevier, vol. 48(C), pages 159-166.
    19. Bretschger, Lucas & Ramer, Roger & Schwark, Florentine, 2011. "Growth effects of carbon policies: Applying a fully dynamic CGE model with heterogeneous capital," Resource and Energy Economics, Elsevier, vol. 33(4), pages 963-980.
    20. Roolfs, Christina & Gaitan, Beatriz & Edenhofer, Ottmar, 2021. "Make or brake — Rich states in voluntary federal emission pricing," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    21. Lucas Bretschger & Roger Ramer, 2012. "Sectoral Growth Effects of Energy Policies in an Increasing-Varieties Model of the Swiss Economy," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 137-166, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Vielle & Alain L. Bernard, 1998. "Un exemple d'utilisation : le coût de politiques de réduction des gaz à effet de serre," Économie et Prévision, Programme National Persée, vol. 136(5), pages 33-48.
    2. Liu, Yu & Tan, Xiu-Jie & Yu, Yang & Qi, Shao-Zhou, 2017. "Assessment of impacts of Hubei Pilot emission trading schemes in China – A CGE-analysis using TermCO2 model," Applied Energy, Elsevier, vol. 189(C), pages 762-769.
    3. Shiran Victoria Shen, 2021. "Integrating Political Science into Climate Modeling: An Example of Internalizing the Costs of Climate-Induced Violence in the Optimal Management of the Climate," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
    4. Erica Perego & Lionel Fontagné & Gianluca Santoni, 2022. "MaGE 3.1: Long-term macroeconomic projections of the World economy," International Economics, CEPII research center, issue 172, pages 168-189.
    5. Khanna, Neha & Chapman, Duane, 1997. "Climate Policy and Petroleum Depletion in an Optimal Growth Framework," Staff Papers 121172, Cornell University, Department of Applied Economics and Management.
    6. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    7. Carolyn Fischer & Richard D. Morgenstern, 2006. "Carbon Abatement Costs: Why the Wide Range of Estimates?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 73-86.
    8. Frankel, Jeffrey A. & Bosetti, Valentina, 2011. "Politically Feasible Emission Target Formulas to Attain 460 ppm CO[subscript 2] Concentrations," Working Paper Series rwp11-016, Harvard University, John F. Kennedy School of Government.
    9. Roberto Roson & Francesco Bosello, 2007. "Estimating a Climate Change Damage Function through General Equilibrium Modeling," Working Papers 2007_08, Department of Economics, University of Venice "Ca' Foscari".
    10. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    11. Roberto Roson & Martina Sartori, 2016. "Estimation of Climate Change Damage Functions for 140 Regions in the GTAP 9 Database," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(2), pages 78-115, December.
    12. Richard Tol, 2007. "The double trade-off between adaptation and mitigation for sea level rise: an application of FUND," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(5), pages 741-753, June.
    13. Hart, Rob & Spiro, Daniel, 2011. "The elephant in Hotelling's room," Energy Policy, Elsevier, vol. 39(12), pages 7834-7838.
    14. Pan, Xunzhang & Teng, Fei & Wang, Gehua, 2014. "A comparison of carbon allocation schemes: On the equity-efficiency tradeoff," Energy, Elsevier, vol. 74(C), pages 222-229.
    15. Uzma Hanif & Shabib Haider Syed & Rafique Ahmad & Kauser Abdullah Malik, 2010. "Economic Impact of Climate Change on the Agricultural Sector of Punjab," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 49(4), pages 771-798.
    16. Kelly C. de Bruin & Rob B. Dellink & Richard S.J. Tol, 2007. "AD-DICE: An Implementation of Adaptation in the DICE Mode," Working Papers 2007.51, Fondazione Eni Enrico Mattei.
    17. Tol, Richard S.J., 2006. "The Polluter Pays Principle and Cost-Benefit Analysis of Climate Change: An Application of Fund," Climate Change Modelling and Policy Working Papers 12058, Fondazione Eni Enrico Mattei (FEEM).
    18. Laurence J. Kotlikoff & Andrey V. ZUBAREV & Andrey POLBIN, 2021. "Will the Paris accord accelerate climate change [Ускоряет Ли Парижское Соглашение Изменение Климата?]," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 1, pages 8-37, February.
    19. Valentina Bosetti & Jeffrey A. Frankel, 2009. "Global Climate Policy Architecture and Political Feasibility: Specific Formulas and Emission Targets to Attain 460 ppm CO2 Concentrations," NBER Working Papers 15516, National Bureau of Economic Research, Inc.
    20. Zhu, Yongbin & Shi, Yajuan & Wang, Zheng, 2014. "How much CO2 emissions will be reduced through industrial structure change if China focuses on domestic rather than international welfare?," Energy, Elsevier, vol. 72(C), pages 168-179.

    More about this item

    Keywords

    Climate policy; input substitution; technological change;
    All these keywords.

    JEL classification:

    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q32 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Exhaustible Resources and Economic Development

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ifwkwp:1316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.