A new class of copulas with tail dependence and a generalized tail dependence estimator
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Fischer, Matthias J. & Dörflinger, Marco, 2006. "A note on a non-parametric tail dependence estimator," Discussion Papers 76/2006, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
- Jadran Dobric & Friedrich Schmid, 2005. "Nonparametric estimation of the lower tail dependence λL in bivariate copulas," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(4), pages 387-407.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dominique Guegan & Giovanni de Luca & Giorgia Rivieccio, 2017. "Three-stage estimation method for non-linear multiple time-series," Post-Print halshs-01439860, HAL.
- Li, Feng & Kang, Yanfei, 2018. "Improving forecasting performance using covariate-dependent copula models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 456-476.
- Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.
- Yuri Salazar & Wing Ng, 2015. "Nonparametric estimation of general multivariate tail dependence and applications to financial time series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 121-158, March.
- Dominique Guegan & Giovanni De Luca & Giorgia Rivieccio, 2017. "Three-stage estimation method for non-linear multiple time-series," Documents de travail du Centre d'Economie de la Sorbonne 17001, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Dominique Guegan & Giovanni de Luca & Giorgia Rivieccio, 2017. "Three-stage estimation method for non-linear multiple time-series," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01439860, HAL.
- Nikoloulopoulos, Aristidis K. & Joe, Harry & Li, Haijun, 2012. "Vine copulas with asymmetric tail dependence and applications to financial return data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3659-3673.
- Panagiotpu, Dimitrios & Stavrakoudis, Athanassios, 2021. "Price dependence among the major EU extra virgin olive oil markets: A time scale analysis," MPRA Paper 114656, University Library of Munich, Germany, revised Jun 2022.
- Peter Grundke, 2019. "Ranking consistency of systemic risk measures: a simulation-based analysis in a banking network model," Review of Quantitative Finance and Accounting, Springer, vol. 52(4), pages 953-990, May.
- Fousekis, Panos & Grigoriadis, Vasilis, 2016. "Spatial price dependence by time scale: Empirical evidence from the international butter markets," Economic Modelling, Elsevier, vol. 54(C), pages 195-204.
- Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2017. "The kidnapping of Europe: High-order moments' transmission between developed and emerging markets," Emerging Markets Review, Elsevier, vol. 31(C), pages 96-115.
- Luca, Giovanni De & Guégan, Dominique & Rivieccio, Giorgia, 2019. "Assessing tail risk for nonlinear dependence of MSCI sector indices: A copula three-stage approach," Finance Research Letters, Elsevier, vol. 30(C), pages 327-333.
- Chen, Zhongfei & Wanke, Peter & Antunes, Jorge Junio Moreira & Zhang, Ning, 2017. "Chinese airline efficiency under CO2 emissions and flight delays: A stochastic network DEA model," Energy Economics, Elsevier, vol. 68(C), pages 89-108.
- Chen Yang & Wenjun Jiang & Jiang Wu & Xin Liu & Zhichuan Li, 2018. "Clustering of financial instruments using jump tail dependence coefficient," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 491-513, August.
- Fousekis, Panos & Grigoriadis, Vasilis, 2017. "Price co-movement and the crack spread in the US futures markets," Journal of Commodity Markets, Elsevier, vol. 7(C), pages 57-71.
- Elena Di Bernardino & Didier Rullière, 2016. "On tail dependence coefficients of transformed multivariate Archimedean copulas," Post-Print hal-00992707, HAL.
More about this item
Keywords
Geometric mean; arithmetic mean; copula; tail dependence;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:faucse:772006. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vierlde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.