IDEAS home Printed from https://ideas.repec.org/p/zbw/cofedp/0712.html
   My bibliography  Save this paper

Estimation of a nonparametric regression spectrum for multivariate time series

Author

Listed:
  • Beran, Jan
  • Heiler, Mark A.

Abstract

Estimation of a nonparametric regression spectrum based on the periodogram is considered. Neither trend estimation nor smoothing of the periodogram are required. Alternatively, for cases where spectral estimation of phase shifts fails and the shift does not depend on frequency, a time domain estimator of the lag-shift is defined. Asymptotic properties of the frequency and time domain estimators are derived. Simulations and a data example illustrate the methods.

Suggested Citation

  • Beran, Jan & Heiler, Mark A., 2007. "Estimation of a nonparametric regression spectrum for multivariate time series," CoFE Discussion Papers 07/12, University of Konstanz, Center of Finance and Econometrics (CoFE).
  • Handle: RePEc:zbw:cofedp:0712
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/32174/1/608932116.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ori Rosen & David S. Stoffer, 2007. "Automatic estimation of multivariate spectra via smoothing splines," Biometrika, Biometrika Trust, vol. 94(2), pages 335-345.
    2. Jan Beran & Sucharita Ghosh, 2000. "Estimation of the Dominating Frequency for Stationary and Nonstationary Fractional Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(5), pages 517-533, September.
    3. Iain M. Johnstone & Bernard W. Silverman, 1997. "Wavelet Threshold Estimators for Data with Correlated Noise," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 319-351.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wishart, Justin Rory, 2011. "Minimax lower bound for kink location estimators in a nonparametric regression model with long-range dependence," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1871-1875.
    2. Linyuan Li & Yimin Xiao, 2007. "Mean Integrated Squared Error of Nonlinear Wavelet-based Estimators with Long Memory Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 299-324, June.
    3. Segal Mark R, 2008. "Re-Cracking the Nucleosome Positioning Code," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-24, April.
    4. Luan, Yihui & Xie, Zhongjie, 2001. "The wavelet identification for jump points of derivative in regression model," Statistics & Probability Letters, Elsevier, vol. 53(2), pages 167-180, June.
    5. Shibin Zhang, 2022. "Automatic estimation of spatial spectra via smoothing splines," Computational Statistics, Springer, vol. 37(2), pages 565-590, April.
    6. McGinnity, K. & Varbanov, R. & Chicken, E., 2017. "Cross-validated wavelet block thresholding for non-Gaussian errors," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 127-137.
    7. Zhang, Shibin, 2020. "Nonparametric Bayesian inference for the spectral density based on irregularly spaced data," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    8. Fryzlewicz, Piotr & Nason, Guy P., 2004. "Smoothing the wavelet periodogram using the Haar-Fisz transform," LSE Research Online Documents on Economics 25231, London School of Economics and Political Science, LSE Library.
    9. repec:jss:jstsof:12:i08 is not listed on IDEAS
    10. Beran, Jan & Heiler, Mark A., 2008. "A nonparametric regression cross spectrum for multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 684-714, April.
    11. Rosen, Ori & Thompson, Wesley K., 2009. "A Bayesian regression model for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3773-3786, September.
    12. Meier, Alexander & Kirch, Claudia & Meyer, Renate, 2020. "Bayesian nonparametric analysis of multivariate time series: A matrix Gamma Process approach," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    13. Porto, Rogério F. & Morettin, Pedro A. & Aubin, Elisete C.Q., 2008. "Wavelet regression with correlated errors on a piecewise Hölder class," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2739-2743, November.
    14. Capobianco Enrico & Marras Elisabetta & Travaglione Antonella, 2011. "Multiscale Characterization of Signaling Network Dynamics through Features," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-32, November.
    15. Iolanda Lo Cascio, 2007. "Wavelet Analysis and Denoising: New Tools for Economists," Working Papers 600, Queen Mary University of London, School of Economics and Finance.
    16. Capobianco, Enrico, 2003. "Independent Multiresolution Component Analysis and Matching Pursuit," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 385-402, March.
    17. Ramsey James B., 2002. "Wavelets in Economics and Finance: Past and Future," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(3), pages 1-29, November.
    18. Graham Horgan, 1999. "Using wavelets for data smoothing: A simulation study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 923-932.
    19. Dominique Guegan, 2003. "A prospective study of the k-factor Gegenbauer processes with heteroscedastic errors and an application to inflation rates," Post-Print halshs-00201314, HAL.
    20. Serban, Nicoleta, 2010. "Noise reduction for enhanced component identification in multi-dimensional biomolecular NMR studies," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1051-1065, April.
    21. Marcelo M. Taddeo & Pedro A. Morettin, 2023. "Bayesian P-Splines Applied to Semiparametric Models with Errors Following a Scale Mixture of Normals," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1331-1355, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cofedp:0712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zfkonde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.