IDEAS home Printed from https://ideas.repec.org/p/yor/yorken/01-12.html
   My bibliography  Save this paper

The Distribution of a Ratio of Quadratic Forms in Noncentral Normal Variables

Author

Listed:
  • Giovanni Forchini

Abstract

An expression for the exact cumulative distribution function of a ratio of quadratic forms in noncentral normal variable is derived in terms of infinite series of top order invariant polynomials.

Suggested Citation

  • Giovanni Forchini, "undated". "The Distribution of a Ratio of Quadratic Forms in Noncentral Normal Variables," Discussion Papers 01/12, Department of Economics, University of York.
  • Handle: RePEc:yor:yorken:01/12
    as

    Download full text from publisher

    File URL: https://www.york.ac.uk/media/economics/documents/discussionpapers/2001/0112.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Forchini, G., 2002. "The Exact Cumulative Distribution Function Of A Ratio Of Quadratic Forms In Normal Variables, With Application To The Ar(1) Model," Econometric Theory, Cambridge University Press, vol. 18(4), pages 823-852, August.
    2. Phillips, P C B, 1986. "The Exact Distribution of the Wald Statistic," Econometrica, Econometric Society, vol. 54(4), pages 881-895, July.
    3. Chikuse, Yasuko, 1987. "Methods for Constructing Top Order Invariant Polynomials," Econometric Theory, Cambridge University Press, vol. 3(2), pages 195-207, April.
    4. Marsh, Patrick W.N., 1998. "Saddlepoint Approximations For Noncentral Quadratic Forms," Econometric Theory, Cambridge University Press, vol. 14(5), pages 539-559, October.
    5. Hillier, G.H., 1999. "The density of a quadratic form in a vector uniformly distributed on the n-sphere," Discussion Paper Series In Economics And Econometrics 9902, Economics Division, School of Social Sciences, University of Southampton.
    6. Marsh, P., 1995. "Saddlepoint approximations and non-central quadratic forms," Discussion Paper Series In Economics And Econometrics 9530, Economics Division, School of Social Sciences, University of Southampton.
    7. Hillier, Grant, 2001. "THE DENSITY OF A QUADRATIC FORM IN A VECTOR UNIFORMLY DISTRIBUTED ON THE n-SPHERE," Econometric Theory, Cambridge University Press, vol. 17(1), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salcedo, Gladys E. & Porto, Rogério F. & Morettin, Pedro A., 2012. "Comparing non-stationary and irregularly spaced time series," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3921-3934.
    2. Grant Hillier & Federico Martellosio, 2013. "Properties of the maximum likelihood estimator in spatial autoregressive models," CeMMAP working papers CWP44/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hillier, Grant & Kan, Raymond & Wang, Xiaolu, 2009. "Computationally Efficient Recursions For Top-Order Invariant Polynomials With Applications," Econometric Theory, Cambridge University Press, vol. 25(1), pages 211-242, February.
    2. Robinson, Peter M. & Rossi, Francesca, 2012. "Improved tests for spatial correlation," MPRA Paper 41835, University Library of Munich, Germany.
    3. Grant Hillier & Federico Martellosio, 2013. "Properties of the maximum likelihood estimator in spatial autoregressive models," CeMMAP working papers CWP44/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. repec:cep:stiecm:/2013/565 is not listed on IDEAS
    5. Giovanni Forchini & Patrick Marsh, "undated". "Exact Inference for the Unit Root Hypothesis," Discussion Papers 00/54, Department of Economics, University of York.
    6. J. Roderick McCrorie, 2021. "Moments in Pearson's Four-Step Uniform Random Walk Problem and Other Applications of Very Well-Poised Generalized Hypergeometric Series," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 244-281, November.
    7. Lu, Zeng-Hua, 2006. "The numerical evaluation of the probability density function of a quadratic form in normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1986-1996, December.
    8. Zeng-Hua Lu & Maxwell King, 2002. "Improving The Numerical Technique For Computing The Accumulated Distribution Of A Quadratic Form In Normal Variables," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 149-165.
    9. Hillier, Grant & Martellosio, Federico, 2006. "Spatial design matrices and associated quadratic forms: structure and properties," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 1-18, January.
    10. Aman Ullah & Yong Bao & Yun Wang, 2014. "Exact Distribution of the Mean Reversion Estimator in the Ornstein-Uhlenbeck Process," Working Papers 201413, University of California at Riverside, Department of Economics.
    11. Grant Hillier & Raymond Kan & Xiaolu Wang, 2008. "Generating functions and short recursions, with applications to the moments of quadratic forms in noncentral normal vectors," CeMMAP working papers CWP14/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Grant Hillier & Federico Martellosio, 2013. "Properties of the maximum likelihood estimator in spatial autoregressive models," CeMMAP working papers 44/13, Institute for Fiscal Studies.
    13. Patrick Marsh, "undated". "Saddlepoint Approximations for Optimal Unit Root Tests," Discussion Papers 09/31, Department of Economics, University of York.
    14. Patrick Marsh, "undated". "Saddlepoint Approximations in Non-Stationary Time Series," Discussion Papers 00/57, Department of Economics, University of York.
    15. Broda, S. & Paolella, M.S., 2009. "Evaluating the density of ratios of noncentral quadratic forms in normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1264-1270, February.
    16. Phillips, Peter C B, 1994. "Some Exact Distribution Theory for Maximum Likelihood Estimators of Cointegrating Coefficients in Error Correction Models," Econometrica, Econometric Society, vol. 62(1), pages 73-93, January.
    17. Yong Bao & Xiaotian Liu & Aman Ullah, 2020. "On the Exact Statistical Distribution of Econometric Estimators and Test Statistics," Working Papers 202014, University of California at Riverside, Department of Economics, revised Jun 2020.
    18. Forchini, G., 2000. "The density of the sufficient statistics for a Gaussian AR(1) model in terms of generalized functions," Statistics & Probability Letters, Elsevier, vol. 50(3), pages 237-243, November.
    19. Peter C. B. Phillips, 2021. "Pitfalls in Bootstrapping Spurious Regression," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 163-217, December.
    20. Patrick Marsh, "undated". "A Measure of Distance for the Unit Root Hypothesis," Discussion Papers 05/02, Department of Economics, University of York.
    21. Yong Bao & Aman Ullah, 2021. "Analytical Finite Sample Econometrics: From A. L. Nagar to Now," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 17-37, December.

    More about this item

    Keywords

    Ratio of quadratic forms; quadratic forms in normal variables.;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:yor:yorken:01/12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Paul Hodgson (email available below). General contact details of provider: https://edirc.repec.org/data/deyoruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.