IDEAS home Printed from https://ideas.repec.org/p/wuu/wpaper/hsc1609.html
   My bibliography  Save this paper

What makes consumers adopt to innovative energy services in the energy market?

Author

Listed:
  • Anna Kowalska-Pyzalska

Abstract

The paper discusses the incentives and barriers of the successful adoption of the innovative energy services in the energy market. The literature review of the outcomes from field experiments and research surveys is enhanced by the results from a pilot study regarding willingness to pay for green energy and by an agent-based model of diffusion of innovative dynamic electricity tariffs. It was found out that to achieve large market penetration rates of the innovative energy services, the consumers must be aware of them. They must be also supported by the access to reliable information and advice to limit their confusion of choice. The perceived difficulty of adoption should be reduced to encourage consumers to get interested in the energy services. Also the distribution channels of the innovation, namely social influence in the consumers' social networks and advertisement in mass-media should be effectively used to boost the diffusion. The great attention should be put on the negative word of mouth, which may limit or even stop the diffusion of innovation.

Suggested Citation

  • Anna Kowalska-Pyzalska, 2016. "What makes consumers adopt to innovative energy services in the energy market?," HSC Research Reports HSC/16/09, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
  • Handle: RePEc:wuu:wpaper:hsc1609
    as

    Download full text from publisher

    File URL: http://www.im.pwr.wroc.pl/~hugo/RePEc/wuu/wpaper/HSC_16_09.pdf
    File Function: Original version, 2016
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jager, Wander, 2006. "Stimulating the diffusion of photovoltaic systems: A behavioural perspective," Energy Policy, Elsevier, vol. 34(14), pages 1935-1943, September.
    2. Negro, Simona O. & Alkemade, Floortje & Hekkert, Marko P., 2012. "Why does renewable energy diffuse so slowly? A review of innovation system problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3836-3846.
    3. Gadenne, David & Sharma, Bishnu & Kerr, Don & Smith, Tim, 2011. "The influence of consumers' environmental beliefs and attitudes on energy saving behaviours," Energy Policy, Elsevier, vol. 39(12), pages 7684-7694.
    4. McMichael, Megan & Shipworth, David, 2013. "The value of social networks in the diffusion of energy-efficiency innovations in UK households," Energy Policy, Elsevier, vol. 53(C), pages 159-168.
    5. Ian Ayres & Sophie Raseman & Alice Shih, 2013. "Evidence from Two Large Field Experiments that Peer Comparison Feedback Can Reduce Residential Energy Usage," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 29(5), pages 992-1022, October.
    6. Zorić, Jelena & Hrovatin, Nevenka, 2012. "Household willingness to pay for green electricity in Slovenia," Energy Policy, Elsevier, vol. 47(C), pages 180-187.
    7. Zhang, Lei & Wu, Yang, 2012. "Market segmentation and willingness to pay for green electricity among urban residents in China: The case of Jiangsu Province," Energy Policy, Elsevier, vol. 51(C), pages 514-523.
    8. Gangale, Flavia & Mengolini, Anna & Onyeji, Ijeoma, 2013. "Consumer engagement: An insight from smart grid projects in Europe," Energy Policy, Elsevier, vol. 60(C), pages 621-628.
    9. Byrka, Katarzyna & Jȩdrzejewski, Arkadiusz & Sznajd-Weron, Katarzyna & Weron, Rafał, 2016. "Difficulty is critical: The importance of social factors in modeling diffusion of green products and practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 723-735.
    10. Baddeley, M., 2011. "Energy, the Environment and Behaviour Change: A survey of insights from behavioural economics," Cambridge Working Papers in Economics 1162, Faculty of Economics, University of Cambridge.
    11. Palmer, J. & Sorda, G. & Madlener, R., 2015. "Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 106-131.
    12. Claudy, Marius C. & Michelsen, Claus & O'Driscoll, Aidan & Mullen, Michael R., 2010. "Consumer awareness in the adoption of microgeneration technologies: An empirical investigation in the Republic of Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2154-2160, September.
    13. Menegaki, Angeliki N., 2012. "A social marketing mix for renewable energy in Europe based on consumer stated preference surveys," Renewable Energy, Elsevier, vol. 39(1), pages 30-39.
    14. Jackson, Jerry, 2010. "Improving energy efficiency and smart grid program analysis with agent-based end-use forecasting models," Energy Policy, Elsevier, vol. 38(7), pages 3771-3780, July.
    15. Katarzyna Sznajd-Weron & Janusz Szwabiński & Rafał Weron, 2014. "Is the Person-Situation Debate Important for Agent-Based Modeling and Vice-Versa?," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-7, November.
    16. Hargreaves, Tom & Nye, Michael & Burgess, Jacquelin, 2010. "Making energy visible: A qualitative field study of how householders interact with feedback from smart energy monitors," Energy Policy, Elsevier, vol. 38(10), pages 6111-6119, October.
    17. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9-10), pages 1082-1095, October.
    18. Zhang, T. & Nuttall, W.J., 2008. "Evaluating Government’s Policies on Promoting Smart Metering in Retail Electricity Markets via Agent Based Simulation," Cambridge Working Papers in Economics 0842, Faculty of Economics, University of Cambridge.
    19. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    20. Perlaviciute, Goda & Steg, Linda, 2014. "Contextual and psychological factors shaping evaluations and acceptability of energy alternatives: Integrated review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 361-381.
    21. Frank, Björn & Enkawa, Takao & Schvaneveldt, Shane J. & Herbas Torrico, Boris, 2015. "Antecedents and consequences of innate willingness to pay for innovations: Understanding motivations and consumer preferences of prospective early adopters," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 252-266.
    22. Hansla, Andre & Gamble, Amelie & Juliusson, Asgeir & Garling, Tommy, 2008. "Psychological determinants of attitude towards and willingness to pay for green electricity," Energy Policy, Elsevier, vol. 36(2), pages 768-774, February.
    23. Anna Kowalska-Pyzalska, 2015. "Social acceptance of green energy and dynamic electricity tariffs - a short review," HSC Research Reports HSC/15/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    24. Borchers, Allison M. & Duke, Joshua M. & Parsons, George R., 2007. "Does willingness to pay for green energy differ by source?," Energy Policy, Elsevier, vol. 35(6), pages 3327-3334, June.
    25. Diaz-Rainey, Ivan & Tzavara, Dionisia, 2012. "Financing the decarbonized energy system through green electricity tariffs: A diffusion model of an induced consumer environmental market," Technological Forecasting and Social Change, Elsevier, vol. 79(9), pages 1693-1704.
    26. Buryk, Stephen & Mead, Doug & Mourato, Susana & Torriti, Jacopo, 2015. "Investigating preferences for dynamic electricity tariffs: The effect of environmental and system benefit disclosure," Energy Policy, Elsevier, vol. 80(C), pages 190-195.
    27. Masini, Andrea & Menichetti, Emanuela, 2012. "The impact of behavioural factors in the renewable energy investment decision making process: Conceptual framework and empirical findings," Energy Policy, Elsevier, vol. 40(C), pages 28-38.
    28. Piotr Przybyła & Katarzyna Sznajd-Weron & Rafał Weron, 2014. "Diffusion Of Innovation Within An Agent-Based Model: Spinsons, Independence And Advertising," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 17(01), pages 1-22.
    29. Ritsuko Ozaki, 2011. "Adopting sustainable innovation: what makes consumers sign up to green electricity?," Business Strategy and the Environment, Wiley Blackwell, vol. 20(1), pages 1-17, January.
    30. Chou, Jui-Sheng & Kim, Changwan & Ung, Thanh-Khiet & Yutami, I Gusti Ayu Novi & Lin, Guo-Tai & Son, Hyojoo, 2015. "Cross-country review of smart grid adoption in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 192-213.
    31. Krishnamurti, Tamar & Schwartz, Daniel & Davis, Alexander & Fischhoff, Baruch & de Bruin, Wändi Bruine & Lave, Lester & Wang, Jack, 2012. "Preparing for smart grid technologies: A behavioral decision research approach to understanding consumer expectations about smart meters," Energy Policy, Elsevier, vol. 41(C), pages 790-797.
    32. Darby, Sarah J. & McKenna, Eoghan, 2012. "Social implications of residential demand response in cool temperate climates," Energy Policy, Elsevier, vol. 49(C), pages 759-769.
    33. Bryan Bollinger & Kenneth Gillingham, 2012. "Peer Effects in the Diffusion of Solar Photovoltaic Panels," Marketing Science, INFORMS, vol. 31(6), pages 900-912, November.
    34. Stigka, Eleni K. & Paravantis, John A. & Mihalakakou, Giouli K., 2014. "Social acceptance of renewable energy sources: A review of contingent valuation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 100-106.
    35. Diaz-Rainey, Ivan & Ashton, John K., 2015. "Investment inefficiency and the adoption of eco-innovations: The case of household energy efficiency technologies," Energy Policy, Elsevier, vol. 82(C), pages 105-117.
    36. Ringler, Philipp & Keles, Dogan & Fichtner, Wolf, 2016. "Agent-based modelling and simulation of smart electricity grids and markets – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 205-215.
    37. M Günther & C Stummer & L M Wakolbinger & M Wildpaner, 2011. "An agent-based simulation approach for the new product diffusion of a novel biomass fuel," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 12-20, January.
    38. Pongiglione, Francesca, 2011. "Climate Change and Individual Decision Making: An Examination of Knowledge, Risk Perception, Self-interest and Their Interplay," Climate Change and Sustainable Development 119094, Fondazione Eni Enrico Mattei (FEEM).
    39. Andrea Masini & E. Menichetti, 2012. "The impact of behavioural factors in the renewable energy investment decision making process: Conceptual framework and empirical findings," Post-Print hal-00651706, HAL.
    40. Sidiras, Dimitrios K. & Koukios, Emmanuel G., 2004. "Solar systems diffusion in local markets," Energy Policy, Elsevier, vol. 32(18), pages 2007-2018, December.
    41. Zarnikau, Jay, 2003. "Consumer demand for `green power' and energy efficiency," Energy Policy, Elsevier, vol. 31(15), pages 1661-1672, December.
    42. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9), pages 1082-1095.
    43. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2014. "Agent-based model for electricity consumption and storage to evaluate economic viability of tariff arbitrage for residential sector demand response," Applied Energy, Elsevier, vol. 126(C), pages 297-306.
    44. Rixen, Martin & Weigand, Jürgen, 2014. "Agent-based simulation of policy induced diffusion of smart meters," Technological Forecasting and Social Change, Elsevier, vol. 85(C), pages 153-167.
    45. Gerpott, Torsten J. & Paukert, Mathias, 2013. "Determinants of willingness to pay for smart meters: An empirical analysis of household customers in Germany," Energy Policy, Elsevier, vol. 61(C), pages 483-495.
    46. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    47. Ellabban, Omar & Abu-Rub, Haitham, 2016. "Smart grid customers' acceptance and engagement: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1285-1298.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lehmann, Nico & Sloot, Daniel & Schüle, Christopher & Ardone, Armin & Fichtner, Wolf, 2023. "The motivational drivers behind consumer preferences for regional electricity – Results of a choice experiment in Southern Germany," Energy Economics, Elsevier, vol. 120(C).
    2. Weron, Tomasz & Kowalska-Pyzalska, Anna & Weron, Rafał, 2018. "The role of educational trainings in the diffusion of smart metering platforms: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 591-600.
    3. Anita Borch & Pål Strandbakken, 2019. "User Involvement of People with Mild Disabilities in Technology Innovations: Does It Make a Difference?," Social Inclusion, Cogitatio Press, vol. 7(1), pages 136-151.
    4. Yash Chawla & Anna Kowalska-Pyzalska, 2019. "Public Awareness and Consumer Acceptance of Smart Meters among Polish Social Media Users," Energies, MDPI, vol. 12(14), pages 1-27, July.
    5. Lehmann, Nico & Sloot, Daniel & Ardone, Armin & Fichtner, Wolf, 2022. "Consumer preferences for the design of a demand response quota scheme – Results of a choice experiment in Germany," Energy Policy, Elsevier, vol. 167(C).
    6. Han-Shen Chen & Bi-Kun Tsai & Chi-Ming Hsieh, 2018. "The Effects of Perceived Barriers on Innovation Resistance of Hydrogen-Electric Motorcycles," Sustainability, MDPI, vol. 10(6), pages 1-15, June.
    7. Sofia-Despoina Papadopoulou & Niki Kalaitzoglou & Maria Psarra & Sideri Lefkeli & Evangelia Karasmanaki & Georgios Tsantopoulos, 2019. "Addressing Energy Poverty through Transitioning to a Carbon-Free Environment," Sustainability, MDPI, vol. 11(9), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kowalska-Pyzalska, Anna, 2018. "What makes consumers adopt to innovative energy services in the energy market? A review of incentives and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3570-3581.
    2. Anna Kowalska-Pyzalska, 2015. "Social acceptance of green energy and dynamic electricity tariffs - a short review," HSC Research Reports HSC/15/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    3. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    4. Anna Kowalska-Pyzalska, 2018. "An Empirical Analysis of Green Electricity Adoption Among Residential Consumers in Poland," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    5. Anna Kowalska-Pyzalska, 2018. "An empirical analysis of green energy adoption among residential consumers in Poland," HSC Research Reports HSC/18/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    6. Weron, Tomasz & Kowalska-Pyzalska, Anna & Weron, Rafał, 2018. "The role of educational trainings in the diffusion of smart metering platforms: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 591-600.
    7. Anna Kowalska-Pyzalska & Katarzyna Byrka, 2019. "Determinants of the Willingness to Energy Monitoring by Residential Consumers: A Case Study in the City of Wroclaw in Poland," Energies, MDPI, vol. 12(5), pages 1-20, March.
    8. Anna Kowalska-Pyzalska & Katarzyna Byrka & Jakub Serek, 2020. "How to Foster the Adoption of Electricity Smart Meters? A Longitudinal Field Study of Residential Consumers," Energies, MDPI, vol. 13(18), pages 1-19, September.
    9. Anna Kowalska-Pyzalska, 2019. "Do Consumers Want to Pay for Green Electricity? A Case Study from Poland," Sustainability, MDPI, vol. 11(5), pages 1-20, March.
    10. Yash Chawla & Anna Kowalska-Pyzalska, 2019. "Public Awareness and Consumer Acceptance of Smart Meters among Polish Social Media Users," Energies, MDPI, vol. 12(14), pages 1-27, July.
    11. Anna Kowalska-Pyzalska & David Ramsey, 2018. "Household willingness to pay for green electricity in Poland," HSC Research Reports HSC/18/04, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    12. Chawla, Yash & Kowalska-Pyzalska, Anna & Skowrońska-Szmer, Anna, 2020. "Perspectives of smart meters’ roll-out in India: An empirical analysis of consumers’ awareness and preferences," Energy Policy, Elsevier, vol. 146(C).
    13. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2014. "Diffusion and adoption of dynamic electricity tariffs: An agent-based modeling approach," HSC Research Reports HSC/14/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    14. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2013. "Going green: Agent-based modeling of the diffusion of dynamic electricity tariffs," HSC Research Reports HSC/13/05, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    15. Fang, Xingming & Wang, Lu & Sun, Chuanwang & Zheng, Xuemei & Wei, Jing, 2021. "Gap between words and actions: Empirical study on consistency of residents supporting renewable energy development in China," Energy Policy, Elsevier, vol. 148(PA).
    16. Soon, Jan-Jan & Ahmad, Siti-Aznor, 2015. "Willingly or grudgingly? A meta-analysis on the willingness-to-pay for renewable energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 877-887.
    17. Byrka, Katarzyna & Jȩdrzejewski, Arkadiusz & Sznajd-Weron, Katarzyna & Weron, Rafał, 2016. "Difficulty is critical: The importance of social factors in modeling diffusion of green products and practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 723-735.
    18. Herbes, Carsten & Friege, Christian & Baldo, Davide & Mueller, Kai-Markus, 2015. "Willingness to pay lip service? Applying a neuroscience-based method to WTP for green electricity," Energy Policy, Elsevier, vol. 87(C), pages 562-572.
    19. Yash Chawla & Anna Kowalska-Pyzalska & Burcu Oralhan, 2020. "Attitudes and Opinions of Social Media Users Towards Smart Meters’ Rollout in Turkey," Energies, MDPI, vol. 13(3), pages 1-27, February.
    20. Toka, Agorasti & Iakovou, Eleftherios & Vlachos, Dimitrios & Tsolakis, Naoum & Grigoriadou, Anastasia-Loukia, 2014. "Managing the diffusion of biomass in the residential energy sector: An illustrative real-world case study," Applied Energy, Elsevier, vol. 129(C), pages 56-69.

    More about this item

    Keywords

    Diffusion of innovation; Incentives and barriers of adoption; Energy market; Willingness to pay; Agent-based modeling and simulation;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wuu:wpaper:hsc1609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rafal Weron (email available below). General contact details of provider: https://edirc.repec.org/data/hspwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.