IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpgt/0412001.html
   My bibliography  Save this paper

Should We Redesign Forecasting Competitions?

Author

Listed:
  • JS Armstrong

    (The Wharton School - University of Pennsylvania)

Abstract

The M3-Competition continues to improve the design of forecasting competitions: It examines more series than any previous competition, improves error analyses. and includes commercial forecasting programs as competitors. To judge where to go from here, I step back to look at the M-Competitions as a whole. I discuss the advantages of the M- Competitions in hopes that they will be retained, describe how to gain additional benefit from future competitions, and finally, describe a low-cost approach to competitions.

Suggested Citation

  • JS Armstrong, 2004. "Should We Redesign Forecasting Competitions?," General Economics and Teaching 0412001, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpgt:0412001
    Note: Type of Document - pdf; pages: 4
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/get/papers/0412/0412001.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fred Collopy & J. Scott Armstrong, 1992. "Rule-Based Forecasting: Development and Validation of an Expert Systems Approach to Combining Time Series Extrapolations," Management Science, INFORMS, vol. 38(10), pages 1394-1414, October.
    2. Scott Armstrong, J., 1988. "Research needs in forecasting," International Journal of Forecasting, Elsevier, vol. 4(3), pages 449-465.
    3. Hubbard, Raymond & Vetter, Daniel E., 1996. "An empirical comparison of published replication research in accounting, economics, finance, management, and marketing," Journal of Business Research, Elsevier, vol. 35(2), pages 153-164, February.
    4. JS Armstrong & Roderick J. Brodie & Andrew G. Parsons, 2004. "Hypotheses in Marketing Science: Literature Review and Publication Audit," General Economics and Teaching 0412013, University Library of Munich, Germany.
    5. JS Armstrong & Fred Collopy, 2004. "Integration of Statistical Methods and Judgment for Time Series," General Economics and Teaching 0412024, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Armstrong, J. Scott & Collopy, Fred & Yokum, J. Thomas, 2005. "Decomposition by causal forces: a procedure for forecasting complex time series," International Journal of Forecasting, Elsevier, vol. 21(1), pages 25-36.
    2. Armstrong, J. Scott & Brodie, Roderick J., 1999. "Forecasting for Marketing," MPRA Paper 81690, University Library of Munich, Germany.
    3. JS Armstrong, 2004. "Forecasting for Environmental Decision Making," General Economics and Teaching 0412023, University Library of Munich, Germany.
    4. Yuehjen Shao & Yue-Fa Lin & Soe-Tsyr Yuan, 1999. "Integrated application of time series multiple-interventions analysis and knowledge-based reasoning," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(6), pages 755-766.
    5. Vokurka, Robert J. & Flores, Benito E. & Pearce, Stephen L., 1996. "Automatic feature identification and graphical support in rule-based forecasting: a comparison," International Journal of Forecasting, Elsevier, vol. 12(4), pages 495-512, December.
    6. Michael A. Clemens, 2017. "The Meaning Of Failed Replications: A Review And Proposal," Journal of Economic Surveys, Wiley Blackwell, vol. 31(1), pages 326-342, February.
    7. Rakesh Sambharya & Martina Musteen, 2014. "Institutional environment and entrepreneurship: An empirical study across countries," Journal of International Entrepreneurship, Springer, vol. 12(4), pages 314-330, December.
    8. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    9. JS Armstrong, 2005. "Incentives for Developing and Communicating Principles: A Reply," General Economics and Teaching 0502049, University Library of Munich, Germany.
    10. Thiyanga S. Talagala & Feng Li & Yanfei Kang, 2019. "Feature-based Forecast-Model Performance Prediction," Monash Econometrics and Business Statistics Working Papers 21/19, Monash University, Department of Econometrics and Business Statistics.
    11. Jac C. Heckelman, 2017. "Tullock on the organization of scientific inquiry," Constitutional Political Economy, Springer, vol. 28(1), pages 1-17, March.
    12. Hensel, Przemysław G., 2019. "Supporting replication research in management journals: Qualitative analysis of editorials published between 1970 and 2015," European Management Journal, Elsevier, vol. 37(1), pages 45-57.
    13. Fildes, Robert & Petropoulos, Fotios, 2015. "Simple versus complex selection rules for forecasting many time series," Journal of Business Research, Elsevier, vol. 68(8), pages 1692-1701.
    14. Rachel Sun & Daniel Shek, 2012. "Positive Youth Development, Life Satisfaction and Problem Behaviour Among Chinese Adolescents in Hong Kong: A Replication," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 105(3), pages 541-559, February.
    15. Mohamed Gaber & Edward J. Lusk, 2019. "A Vetting Protocol for the Analytical Procedures Platform for the AP-Phase of PCAOB Audits," Accounting and Finance Research, Sciedu Press, vol. 8(4), pages 1-43, November.
    16. Edward J. Lusk, 2019. "Time Series Forecasting in Stock Trading Markets: The Turning Point Curiosity," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 8(4), pages 01-16, July.
    17. Daniele Fanelli, 2012. "Negative results are disappearing from most disciplines and countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(3), pages 891-904, March.
    18. Francisco J. Conejo & Lawrence F. Cunningham & Clifford E. Young, 2020. "Revisiting the Brand Luxury Index: new empirical evidence and future directions," Journal of Brand Management, Palgrave Macmillan, vol. 27(1), pages 108-122, January.
    19. Vinay Singh & Bhasker Choubey & Stephan Sauer, 2024. "Liquidity forecasting at corporate and subsidiary levels using machine learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(3), September.
    20. Pierre Berthon & Leyland Pitt & Michael Ewing & Christopher L. Carr, 2002. "Potential Research Space in MIS: A Framework for Envisioning and Evaluating Research Replication, Extension, and Generation," Information Systems Research, INFORMS, vol. 13(4), pages 416-427, December.

    More about this item

    Keywords

    forecasting; forecasting competitions;

    JEL classification:

    • A - General Economics and Teaching

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpgt:0412001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.