IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v12y1996i4p495-512.html
   My bibliography  Save this article

Automatic feature identification and graphical support in rule-based forecasting: a comparison

Author

Listed:
  • Vokurka, Robert J.
  • Flores, Benito E.
  • Pearce, Stephen L.

Abstract

No abstract is available for this item.

Suggested Citation

  • Vokurka, Robert J. & Flores, Benito E. & Pearce, Stephen L., 1996. "Automatic feature identification and graphical support in rule-based forecasting: a comparison," International Journal of Forecasting, Elsevier, vol. 12(4), pages 495-512, December.
  • Handle: RePEc:eee:intfor:v:12:y:1996:i:4:p:495-512
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(96)00682-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Everette S. Gardner, Jr. & Ed. Mckenzie, 1985. "Forecasting Trends in Time Series," Management Science, INFORMS, vol. 31(10), pages 1237-1246, October.
    2. Schnaars, Steven P., 1986. "A comparison of extrapolation models on yearly sales forecasts," International Journal of Forecasting, Elsevier, vol. 2(1), pages 71-85.
    3. Lo, Tammy, 1994. "An expert system for choosing demand forecasting techniques," International Journal of Production Economics, Elsevier, vol. 33(1-3), pages 5-15, January.
    4. Robert Fildes, 1989. "Evaluation of Aggregate and Individual Forecast Method Selection Rules," Management Science, INFORMS, vol. 35(9), pages 1056-1065, September.
    5. Fred Collopy & J. Scott Armstrong, 1992. "Rule-Based Forecasting: Development and Validation of an Expert Systems Approach to Combining Time Series Extrapolations," Management Science, INFORMS, vol. 38(10), pages 1394-1414, October.
    6. J. Scott Armstrong, 1984. "Forecasting by Extrapolation: Conclusions from 25 Years of Research," Interfaces, INFORMS, vol. 14(6), pages 52-66, December.
    7. Scott Armstrong, J., 1988. "Research needs in forecasting," International Journal of Forecasting, Elsevier, vol. 4(3), pages 449-465.
    8. Robert Carbone & Allan Andersen & Yvan Corriveau & Paul Piat Corson, 1983. "Comparing for Different Time Series Methods the Value of Technical Expertise Individualized Analysis, and Judgmental Adjustment," Management Science, INFORMS, vol. 29(5), pages 559-566, May.
    9. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    10. Spyros Makridakis & Robert L. Winkler, 1983. "Averages of Forecasts: Some Empirical Results," Management Science, INFORMS, vol. 29(9), pages 987-996, September.
    11. Weitz, Rob R., 1986. "Nostradamus A knowledge-based forecasting advisor," International Journal of Forecasting, Elsevier, vol. 2(3), pages 273-283.
    12. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    13. Sanders, NR & Ritzman, LP, 1990. "Improving short-term forecasts," Omega, Elsevier, vol. 18(4), pages 365-373.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Everette S. Gardner, 1999. "Note: Rule-Based Forecasting vs. Damped-Trend Exponential Smoothing," Management Science, INFORMS, vol. 45(8), pages 1169-1176, August.
    2. Yuehjen Shao & Yue-Fa Lin & Soe-Tsyr Yuan, 1999. "Integrated application of time series multiple-interventions analysis and knowledge-based reasoning," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(6), pages 755-766.
    3. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    4. Robert Fildes & Gary Madden & Joachim Tan, 2007. "Optimal forecasting model selection and data characteristics," Applied Financial Economics, Taylor & Francis Journals, vol. 17(15), pages 1251-1264.
    5. Song, Haiyan & Gao, Bastian Z. & Lin, Vera S., 2013. "Combining statistical and judgmental forecasts via a web-based tourism demand forecasting system," International Journal of Forecasting, Elsevier, vol. 29(2), pages 295-310.
    6. Armstrong, J. Scott, 2006. "Findings from evidence-based forecasting: Methods for reducing forecast error," International Journal of Forecasting, Elsevier, vol. 22(3), pages 583-598.
    7. Thomassey, Sebastien & Happiette, Michel & Castelain, Jean Marie, 2005. "A short and mean-term automatic forecasting system--application to textile logistics," European Journal of Operational Research, Elsevier, vol. 161(1), pages 275-284, February.
    8. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    9. Adya, Monica, 2000. "Corrections to rule-based forecasting: findings from a replication," International Journal of Forecasting, Elsevier, vol. 16(1), pages 125-127.
    10. JS Armstrong & Fred Collopy, 2004. "Integration of Statistical Methods and Judgment for Time Series," General Economics and Teaching 0412024, University Library of Munich, Germany.
    11. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    12. Adya, Monica & Collopy, Fred & Armstrong, J. Scott & Kennedy, Miles, 2001. "Automatic identification of time series features for rule-based forecasting," International Journal of Forecasting, Elsevier, vol. 17(2), pages 143-157.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Webby, Richard & O'Connor, Marcus, 1996. "Judgemental and statistical time series forecasting: a review of the literature," International Journal of Forecasting, Elsevier, vol. 12(1), pages 91-118, March.
    2. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    3. Petropoulos, Fotios & Makridakis, Spyros & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2014. "‘Horses for Courses’ in demand forecasting," European Journal of Operational Research, Elsevier, vol. 237(1), pages 152-163.
    4. Yuehjen Shao & Yue-Fa Lin & Soe-Tsyr Yuan, 1999. "Integrated application of time series multiple-interventions analysis and knowledge-based reasoning," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(6), pages 755-766.
    5. Fildes, Robert, 2006. "The forecasting journals and their contribution to forecasting research: Citation analysis and expert opinion," International Journal of Forecasting, Elsevier, vol. 22(3), pages 415-432.
    6. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    7. Fildes, Robert & Hibon, Michele & Makridakis, Spyros & Meade, Nigel, 1998. "Generalising about univariate forecasting methods: further empirical evidence," International Journal of Forecasting, Elsevier, vol. 14(3), pages 339-358, September.
    8. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    9. Tashman, Leonard J. & Kruk, Joshua M., 1996. "The use of protocols to select exponential smoothing procedures: A reconsideration of forecasting competitions," International Journal of Forecasting, Elsevier, vol. 12(2), pages 235-253, June.
    10. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    11. Armstrong, J. Scott & Morwitz, Vicki G. & Kumar, V., 2000. "Sales forecasts for existing consumer products and services: Do purchase intentions contribute to accuracy?," International Journal of Forecasting, Elsevier, vol. 16(3), pages 383-397.
    12. Everette S. Gardner, 1999. "Note: Rule-Based Forecasting vs. Damped-Trend Exponential Smoothing," Management Science, INFORMS, vol. 45(8), pages 1169-1176, August.
    13. Fred Collopy & J. Scott Armstrong, 1992. "Rule-Based Forecasting: Development and Validation of an Expert Systems Approach to Combining Time Series Extrapolations," Management Science, INFORMS, vol. 38(10), pages 1394-1414, October.
    14. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    15. Welch, Eric & Bretschneider, Stuart & Rohrbaugh, John, 1998. "Accuracy of judgmental extrapolation of time series data: Characteristics, causes, and remediation strategies for forecasting," International Journal of Forecasting, Elsevier, vol. 14(1), pages 95-110, March.
    16. JS Armstrong, 2004. "Forecasting for Environmental Decision Making," General Economics and Teaching 0412023, University Library of Munich, Germany.
    17. JS Armstrong & Fred Collopy, 2004. "Integration of Statistical Methods and Judgment for Time Series," General Economics and Teaching 0412024, University Library of Munich, Germany.
    18. Robert Fildes & Gary Madden & Joachim Tan, 2007. "Optimal forecasting model selection and data characteristics," Applied Financial Economics, Taylor & Francis Journals, vol. 17(15), pages 1251-1264.
    19. JS Armstrong, 2004. "Research on Forecasting: A Quarter-Century Review, 1960-1984," General Economics and Teaching 0412006, University Library of Munich, Germany.
    20. Armstrong, J. Scott, 2006. "Findings from evidence-based forecasting: Methods for reducing forecast error," International Journal of Forecasting, Elsevier, vol. 22(3), pages 583-598.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:12:y:1996:i:4:p:495-512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.