IDEAS home Printed from https://ideas.repec.org/p/wop/pennin/03-12.html
   My bibliography  Save this paper

Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective

Author

Listed:
  • Lawrence Brown
  • Noah Gans
  • Avishai Mandelbaum
  • Anat Sakov
  • Haipeng Shen
  • Sergey Zeltyn
  • Linda Zhao
  • Novemer

Abstract

A call center is a service network in which agents provide telephone-based services. Customers that seek these services are delayed in tele-queues. This paper summarizes an analysis of a unique record of call center operations. The data comprise a complete operational history of a small banking call center, call by call, over a full year. Taking the perspective of queueing theory, we decompose the service process into three fundamental components: arrivals, customer abandonment behavior and service durations. Each component involves different basic mathematical structures and requires a different style of statistical analysis. Some of the key empirical results are sketched, along with descriptions of the varied techniques required. Several statistical techniques are developed for analysis of the basic components. One of these is a test that a point process is a Poisson process. Another involves estimation of the mean function in a nonparametric regression with lognormal errors. A new graphical technique is introduced for nonparametric hazard rate estimation with censored data. Models are developed and implemented for forecasting of Poisson arrival rates. We then survey how the characteristics deduced from the statistical analyses form the building blocks for theoretically interesting and practically useful mathematical models for call center operations. Key Words: call centers, queueing theory, lognormal distribution, inhomogeneous Poisson process, censored data, human patience, prediction of Poisson rates, Khintchine-Pollaczek formula, service times, arrival rate, abandonment rate, multiserver queues.

Suggested Citation

  • Lawrence Brown & Noah Gans & Avishai Mandelbaum & Anat Sakov & Haipeng Shen & Sergey Zeltyn & Linda Zhao & Novemer, "undated". "Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective," Center for Financial Institutions Working Papers 03-12, Wharton School Center for Financial Institutions, University of Pennsylvania.
  • Handle: RePEc:wop:pennin:03-12
    as

    Download full text from publisher

    File URL: http://fic.wharton.upenn.edu/fic/papers/03/0312.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ety Zohar & Avishai Mandelbaum & Nahum Shimkin, 2002. "Adaptive Behavior of Impatient Customers in Tele-Queues: Theory and Empirical Support," Management Science, INFORMS, vol. 48(4), pages 566-583, April.
    2. Geurt Jongbloed & Ger Koole, 2001. "Managing uncertainty in call centres using Poisson mixtures," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 17(4), pages 307-318, October.
    3. David Y. Sze, 1984. "OR Practice—A Queueing Model for Telephone Operator Staffing," Operations Research, INFORMS, vol. 32(2), pages 229-249, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noah Gans & Haipeng Shen & Yong-Pin Zhou & Nikolay Korolev & Alan McCord & Herbert Ristock, 2015. "Parametric Forecasting and Stochastic Programming Models for Call-Center Workforce Scheduling," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 571-588, October.
    2. De Munck, Thomas & Chevalier, Philippe & Tancrez, Jean-Sébastien, 2023. "Managing priorities on on-demand service platforms with waiting time differentiation," International Journal of Production Economics, Elsevier, vol. 266(C).
    3. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    4. Rouba Ibrahim & Pierre L'Ecuyer, 2013. "Forecasting Call Center Arrivals: Fixed-Effects, Mixed-Effects, and Bivariate Models," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 72-85, May.
    5. Alex Roubos & Ger Koole & Raik Stolletz, 2012. "Service-Level Variability of Inbound Call Centers," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 402-413, July.
    6. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2019. "Statistical and economic evaluation of time series models for forecasting arrivals at call centers," Empirical Economics, Springer, vol. 57(3), pages 923-955, September.
    7. Delasay, Mohammad & Ingolfsson, Armann & Kolfal, Bora & Schultz, Kenneth, 2019. "Load effect on service times," European Journal of Operational Research, Elsevier, vol. 279(3), pages 673-686.
    8. James W. Taylor, 2012. "Density Forecasting of Intraday Call Center Arrivals Using Models Based on Exponential Smoothing," Management Science, INFORMS, vol. 58(3), pages 534-549, March.
    9. Pengfei Guo & Paul Zipkin, 2007. "Analysis and Comparison of Queues with Different Levels of Delay Information," Management Science, INFORMS, vol. 53(6), pages 962-970, June.
    10. Jouini, Oualid & Dallery, Yves & Aksin, Zeynep, 2009. "Queueing models for full-flexible multi-class call centers with real-time anticipated delays," International Journal of Production Economics, Elsevier, vol. 120(2), pages 389-399, August.
    11. Pengfei Guo & Refael Hassin, 2011. "Strategic Behavior and Social Optimization in Markovian Vacation Queues," Operations Research, INFORMS, vol. 59(4), pages 986-997, August.
    12. Marcos Singer & Patricio Donoso & Alan Scheller-Wolf, 2008. "Una Introducción A La Teoría De Colas Aplicada A La Gestión De Servicios," Abante, Escuela de Administracion. Pontificia Universidad Católica de Chile., vol. 11(2), pages 93-120.
    13. Oualid Jouini & Zeynep Akşin & Yves Dallery, 2011. "Call Centers with Delay Information: Models and Insights," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 534-548, October.
    14. Song‐Hee Kim & Ward Whitt, 2014. "Choosing arrival process models for service systems: Tests of a nonhomogeneous Poisson process," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(1), pages 66-90, February.
    15. Li Xiao & Susan H. Xu & David D. Yao & Hanqin Zhang, 2022. "Optimal staffing for ticket queues," Queueing Systems: Theory and Applications, Springer, vol. 102(1), pages 309-351, October.
    16. Britt W. J. Mathijsen & A. J. E. M. Janssen & Johan S. H. Leeuwaarden & Bert Zwart, 2018. "Robust heavy-traffic approximations for service systems facing overdispersed demand," Queueing Systems: Theory and Applications, Springer, vol. 90(3), pages 257-289, December.
    17. Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
    18. Zeynep Akşin & Barış Ata & Seyed Morteza Emadi & Che-Lin Su, 2013. "Structural Estimation of Callers' Delay Sensitivity in Call Centers," Management Science, INFORMS, vol. 59(12), pages 2727-2746, December.
    19. Ding, S. & Koole, G. & van der Mei, R.D., 2015. "On the estimation of the true demand in call centers with redials and reconnects," European Journal of Operational Research, Elsevier, vol. 246(1), pages 250-262.
    20. J. E. Reed & Amy R. Ward, 2008. "Approximating the GI/GI/1+GI Queue with a Nonlinear Drift Diffusion: Hazard Rate Scaling in Heavy Traffic," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 606-644, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:pennin:03-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/fiupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.