A Note on the Twice Differentiable Cubic Augmented Lagrangian
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Marc Teboulle, 1992. "Entropic Proximal Mappings with Applications to Nonlinear Programming," Mathematics of Operations Research, INFORMS, vol. 17(3), pages 670-690, August.
- Jonathan Eckstein, 1993. "Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 202-226, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Papa Quiroz, E.A. & Roberto Oliveira, P., 2012. "An extension of proximal methods for quasiconvex minimization on the nonnegative orthant," European Journal of Operational Research, Elsevier, vol. 216(1), pages 26-32.
- Regina Sandra Burachik & B. F. Svaiter, 2001. "A Relative Error Tolerance for a Family of Generalized Proximal Point Methods," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 816-831, November.
- Emanuel Laude & Peter Ochs & Daniel Cremers, 2020. "Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 724-761, March.
- K. C. Kiwiel, 1998. "Subgradient Method with Entropic Projections for Convex Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 96(1), pages 159-173, January.
- Jonathan Eckstein & Paulo Silva, 2010. "Proximal methods for nonlinear programming: double regularization and inexact subproblems," Computational Optimization and Applications, Springer, vol. 46(2), pages 279-304, June.
- S. H. Pan & J. S. Chen, 2008. "Proximal-Like Algorithm Using the Quasi D-Function for Convex Second-Order Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 138(1), pages 95-113, July.
- Jein-Shan Chen & Shaohua Pan, 2010. "An entropy-like proximal algorithm and the exponential multiplier method for convex symmetric cone programming," Computational Optimization and Applications, Springer, vol. 47(3), pages 477-499, November.
- Hong T. M. Chu & Ling Liang & Kim-Chuan Toh & Lei Yang, 2023. "An efficient implementable inexact entropic proximal point algorithm for a class of linear programming problems," Computational Optimization and Applications, Springer, vol. 85(1), pages 107-146, May.
- K. Kiwiel, 1995. "Proximal Minimization Methods with Generalized Bregman Functions," Working Papers wp95024, International Institute for Applied Systems Analysis.
- Heinz H. Bauschke & Jérôme Bolte & Marc Teboulle, 2017. "A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 330-348, May.
- K. Kiwiel, 1994. "Free-Steering Relaxation Methods for Problems with Strictly Convex Costs and Linear Constraints," Working Papers wp94089, International Institute for Applied Systems Analysis.
- Yi Zhou & Yingbin Liang & Lixin Shen, 2019. "A simple convergence analysis of Bregman proximal gradient algorithm," Computational Optimization and Applications, Springer, vol. 73(3), pages 903-912, July.
- Heinz H. Bauschke & Jérôme Bolte & Jiawei Chen & Marc Teboulle & Xianfu Wang, 2019. "On Linear Convergence of Non-Euclidean Gradient Methods without Strong Convexity and Lipschitz Gradient Continuity," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1068-1087, September.
- Roman Polyak, 2015. "Lagrangian Transformation and Interior Ellipsoid Methods in Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 966-992, March.
- A. Auslender & M. Teboulle, 2004. "Interior Gradient and Epsilon-Subgradient Descent Methods for Constrained Convex Minimization," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 1-26, February.
- Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
- J. X. Cruz Neto & O. P. Ferreira & P. R. Oliveira & R. C. M. Silva, 2008. "Central Paths in Semidefinite Programming, Generalized Proximal-Point Method and Cauchy Trajectories in Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 227-242, November.
- Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods," Computational Optimization and Applications, Springer, vol. 51(2), pages 649-679, March.
- J. X. Cruz Neto & P. R. Oliveira & A. Soubeyran & J. C. O. Souza, 2020.
"A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem,"
Annals of Operations Research, Springer, vol. 289(2), pages 313-339, June.
- J. Cruz Neto & P. Oliveira & Antoine Soubeyran & J. Souza, 2020. "A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem," Post-Print hal-01985336, HAL.
- Villacorta, Kely D.V. & Oliveira, P. Roberto, 2011. "An interior proximal method in vector optimization," European Journal of Operational Research, Elsevier, vol. 214(3), pages 485-492, November.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:iasawp:wp94012. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/iiasaat.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.