IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v73y2019i3d10.1007_s10589-019-00092-y.html
   My bibliography  Save this article

A simple convergence analysis of Bregman proximal gradient algorithm

Author

Listed:
  • Yi Zhou

    (Duke University)

  • Yingbin Liang

    (The Ohio State University)

  • Lixin Shen

    (Syracuse University)

Abstract

In this paper, we provide a simple convergence analysis of proximal gradient algorithm with Bregman distance, which provides a tighter bound than existing result. In particular, for the problem of minimizing a class of convex objective functions, we show that proximal gradient algorithm with Bregman distance can be viewed as proximal point algorithm that incorporates another Bregman distance. Consequently, the convergence result of the proximal gradient algorithm with Bregman distance follows directly from that of the proximal point algorithm with Bregman distance, and this leads to a simpler convergence analysis with a tighter convergence bound than existing ones. We further propose and analyze the backtracking line-search variant of the proximal gradient algorithm with Bregman distance.

Suggested Citation

  • Yi Zhou & Yingbin Liang & Lixin Shen, 2019. "A simple convergence analysis of Bregman proximal gradient algorithm," Computational Optimization and Applications, Springer, vol. 73(3), pages 903-912, July.
  • Handle: RePEc:spr:coopap:v:73:y:2019:i:3:d:10.1007_s10589-019-00092-y
    DOI: 10.1007/s10589-019-00092-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-019-00092-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-019-00092-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heinz H. Bauschke & Jérôme Bolte & Marc Teboulle, 2017. "A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 330-348, May.
    2. Marc Teboulle, 1992. "Entropic Proximal Mappings with Applications to Nonlinear Programming," Mathematics of Operations Research, INFORMS, vol. 17(3), pages 670-690, August.
    3. Jonathan Eckstein, 1993. "Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 202-226, February.
    4. NESTEROV, Yu., 2005. "Smooth minimization of non-smooth functions," LIDAM Reprints CORE 1819, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filip Hanzely & Peter Richtárik & Lin Xiao, 2021. "Accelerated Bregman proximal gradient methods for relatively smooth convex optimization," Computational Optimization and Applications, Springer, vol. 79(2), pages 405-440, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emanuel Laude & Peter Ochs & Daniel Cremers, 2020. "Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 724-761, March.
    2. Heinz H. Bauschke & Jérôme Bolte & Jiawei Chen & Marc Teboulle & Xianfu Wang, 2019. "On Linear Convergence of Non-Euclidean Gradient Methods without Strong Convexity and Lipschitz Gradient Continuity," Journal of Optimization Theory and Applications, Springer, vol. 182(3), pages 1068-1087, September.
    3. Papa Quiroz, E.A. & Roberto Oliveira, P., 2012. "An extension of proximal methods for quasiconvex minimization on the nonnegative orthant," European Journal of Operational Research, Elsevier, vol. 216(1), pages 26-32.
    4. Regina Sandra Burachik & B. F. Svaiter, 2001. "A Relative Error Tolerance for a Family of Generalized Proximal Point Methods," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 816-831, November.
    5. Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
    6. K. C. Kiwiel, 1998. "Subgradient Method with Entropic Projections for Convex Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 96(1), pages 159-173, January.
    7. Jonathan Eckstein & Paulo Silva, 2010. "Proximal methods for nonlinear programming: double regularization and inexact subproblems," Computational Optimization and Applications, Springer, vol. 46(2), pages 279-304, June.
    8. S. H. Pan & J. S. Chen, 2008. "Proximal-Like Algorithm Using the Quasi D-Function for Convex Second-Order Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 138(1), pages 95-113, July.
    9. Vincenzo Bonifaci, 2021. "A Laplacian approach to $$\ell _1$$ ℓ 1 -norm minimization," Computational Optimization and Applications, Springer, vol. 79(2), pages 441-469, June.
    10. Jein-Shan Chen & Shaohua Pan, 2010. "An entropy-like proximal algorithm and the exponential multiplier method for convex symmetric cone programming," Computational Optimization and Applications, Springer, vol. 47(3), pages 477-499, November.
    11. Hong T. M. Chu & Ling Liang & Kim-Chuan Toh & Lei Yang, 2023. "An efficient implementable inexact entropic proximal point algorithm for a class of linear programming problems," Computational Optimization and Applications, Springer, vol. 85(1), pages 107-146, May.
    12. K. Kiwiel, 1994. "A Note on the Twice Differentiable Cubic Augmented Lagrangian," Working Papers wp94012, International Institute for Applied Systems Analysis.
    13. K. Kiwiel, 1995. "Proximal Minimization Methods with Generalized Bregman Functions," Working Papers wp95024, International Institute for Applied Systems Analysis.
    14. Heinz H. Bauschke & Jérôme Bolte & Marc Teboulle, 2017. "A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 330-348, May.
    15. K. Kiwiel, 1994. "Free-Steering Relaxation Methods for Problems with Strictly Convex Costs and Linear Constraints," Working Papers wp94089, International Institute for Applied Systems Analysis.
    16. Roman Polyak, 2015. "Lagrangian Transformation and Interior Ellipsoid Methods in Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 966-992, March.
    17. Xin Jiang & Lieven Vandenberghe, 2023. "Bregman Three-Operator Splitting Methods," Journal of Optimization Theory and Applications, Springer, vol. 196(3), pages 936-972, March.
    18. A. Auslender & M. Teboulle, 2004. "Interior Gradient and Epsilon-Subgradient Descent Methods for Constrained Convex Minimization," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 1-26, February.
    19. Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
    20. Regina S. Burachik & Yaohua Hu & Xiaoqi Yang, 2022. "Interior quasi-subgradient method with non-Euclidean distances for constrained quasi-convex optimization problems in hilbert spaces," Journal of Global Optimization, Springer, vol. 83(2), pages 249-271, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:73:y:2019:i:3:d:10.1007_s10589-019-00092-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.