IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwrsa/ersa15p1229.html
   My bibliography  Save this paper

Eficiência relativa dos setores econômicos de Minas Gerais: uma aplicação do modelo DEA na matriz insumo-produto

Author

Listed:
  • Eduardo Belisario Finamore
  • Adriano Provezano Gomes
  • Roberto Serpa Dias
  • Matheus Alves Dias

Abstract

O crescimento econômico tem sido uma das grandes questões da sociedade atual. Desde 2008 as grandes potências vêm enfrentando dificuldades para retornar ao ciclo de desenvolvimento pelo qual passavam antes da crise mundial afetando os países emergentes que, por sua vez, devem buscar uma maior eficiência para enfrentar o cenário de maior competição econômica global. Nesse contexto, esse trabalho preocupa-se com a seguinte questão: do ponto de vista social, quais setores da economia apresentam uma melhor combinação no uso dos insumos disponíveis na sociedade para a obtenção de sua produção, de forma que a acumulação de capital seja obtida do modo mais eficiente possível? Para estudar essa questão, foi analisado o Estado de Minas Gerais, terceira maior economia dentre os Estados brasileiros. O objetivo é avaliar quais são os setores econômicos mais eficientes na geração de capital e qual o impacto no Valor Bruto da Produção estadual, caso todos os setores produzissem de forma eficiente. Para a medida de eficiência setorial foi utilizada a Análise Envoltória de Dados (DEA), uma abordagem não-paramétrica que analisa a conversão de insumos em produtos, que permite quantificar a quantidade de produtos que pode ser expandida sem a necessidade de mais insumos, considerando que existem unidades eficientes que conseguem fazê-lo. Os dados utilizados foram retirados da matriz insumo-produto do estado de Minas Gerais, representando as relações de compra e venda de 35 setores. Os setores foram agrupados em 4 grupos: agricultura, agroindústria, indústria e serviços. Inicialmente, foram calculadas as medidas de eficiência para todos os setores. Considerando um modelo com retornos variáveis, isto é, sem a influência da escala de produção, 13 setores foram considerados eficientes. Tomando-se como referência os setores mais eficientes, a metodologia DEA permite projetar o valor da produção que poderia ser obtido nos setores que apresentaram ineficiência técnica. Caso todos os setores operassem de forma equivalente, isto é, com a mesma eficiência em transformar capital em mais capital, o valor bruto da produção em Minas Gerais poderia crescer em até 40%. Após agregar os setores econômicos, verificou-se que, em média, os setores ligados à agropecuária são os mais eficientes, seguidos dos setores de serviço, da agroindústria e, por fim, da indústria. Considerando os resultados da simulação com orientação produto, ou seja, eliminar as ineficiências com aumento da produção, mantendo constante o uso dos insumos, percebe-se que para a convergência de eficiência entre os setores, a indústria deveria aumentar sua produção em 77,8%, a agroindústria em 54,3%, o setor de serviços em 12,6% e a agropecuária em 9,1%. As simulações mostram o potencial de economia de recursos com a eliminação das ineficiências técnicas de produção, ou ainda uma reorganização produtiva, com a alocação de novos investimentos nos setores mais eficientes.

Suggested Citation

  • Eduardo Belisario Finamore & Adriano Provezano Gomes & Roberto Serpa Dias & Matheus Alves Dias, 2015. "Eficiência relativa dos setores econômicos de Minas Gerais: uma aplicação do modelo DEA na matriz insumo-produto," ERSA conference papers ersa15p1229, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa15p1229
    as

    Download full text from publisher

    File URL: https://www-sre.wu.ac.at/ersa/ersaconfs/ersa15/e150825aFinal01229.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), 2011. "Handbook on Data Envelopment Analysis," International Series in Operations Research and Management Science, Springer, number 978-1-4419-6151-8, December.
    2. Charles R. Hulten, 2000. "Total Factor Productivity: A Short Biography," NBER Working Papers 7471, National Bureau of Economic Research, Inc.
    3. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    2. Duk Hee Lee & Il Won Seo & Ho Chull Choe & Hee Dae Kim, 2012. "Collaboration network patterns and research performance: the case of Korean public research institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 925-942, June.
    3. Feng Li & Qingyuan Zhu & Jun Zhuang, 2018. "Analysis of fire protection efficiency in the United States: a two-stage DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 23-68, January.
    4. Margareta Gardijan & Zrinka Lukač, 2018. "Measuring the relative efficiency of the food and drink industry in the chosen EU countries using the data envelopment analysis with missing data," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 695-713, September.
    5. Mehdiloozad, Mahmood & Zhu, Joe & Sahoo, Biresh K., 2018. "Identification of congestion in data envelopment analysis under the occurrence of multiple projections: A reliable method capable of dealing with negative data," European Journal of Operational Research, Elsevier, vol. 265(2), pages 644-654.
    6. A. Guerrini & G. Romano & L. Carosi & F. Mancuso, 2017. "Cost Savings in Wastewater Treatment Processes: the Role of Environmental and Operational Drivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(8), pages 2465-2478, June.
    7. Tao Ding & Ya Chen & Huaqing Wu & Yuqi Wei, 2018. "Centralized fixed cost and resource allocation considering technology heterogeneity: a DEA approach," Annals of Operations Research, Springer, vol. 268(1), pages 497-511, September.
    8. Gardijan Kedžo, Margareta & Lukač, Zrinka, 2021. "The financial efficiency of small food and drink producers across selected European Union countries using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 291(2), pages 586-600.
    9. Mehdiloo, Mahmood & Podinovski, Victor V., 2019. "Selective strong and weak disposability in efficiency analysis," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1154-1169.
    10. Imanirad, Raha & Cook, Wade D. & Aviles-Sacoto, Sonia Valeria & Zhu, Joe, 2015. "Partial input to output impacts in DEA: The case of DMU-specific impacts," European Journal of Operational Research, Elsevier, vol. 244(3), pages 837-844.
    11. Ricardo Ocaña-Riola & Carmen Pérez-Romero & Mª Isabel Ortega-Díaz & José Jesús Martín-Martín, 2021. "Multilevel Zero-One Inflated Beta Regression Model for the Analysis of the Relationship between Exogenous Health Variables and Technical Efficiency in the Spanish National Health System Hospitals," IJERPH, MDPI, vol. 18(19), pages 1-18, September.
    12. Necmi Avkiran & Alan McCrystal, 2014. "Intertemporal analysis of organizational productivity in residential aged care networks: scenario analyses for setting policy targets," Health Care Management Science, Springer, vol. 17(2), pages 113-125, June.
    13. Amirteimoori, Alireza & Cezar, Asunur & Zadmirzaei, Majid & Susaeta, Andres, 2024. "Environmental performance evaluation in the forest sector: An extended stochastic data envelopment analysis approach," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    14. Rudra Bahadur SHRESTHA & Wen-Chi HUANG & Shriniwas GAUTAM & Thomas Gordon JOHNSON, 2016. "Efficiency of small scale vegetable farms: policy implications for the rural poverty reduction in Nepal," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 62(4), pages 181-195.
    15. Loske, Dominic & Klumpp, Matthias, 2021. "Human-AI collaboration in route planning: An empirical efficiency-based analysis in retail logistics," International Journal of Production Economics, Elsevier, vol. 241(C).
    16. Fernández, David & Pozo, Carlos & Folgado, Rubén & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2018. "Productivity and energy efficiency assessment of existing industrial gases facilities via data envelopment analysis and the Malmquist index," Applied Energy, Elsevier, vol. 212(C), pages 1563-1577.
    17. George Fragkiadakis & Michael Doumpos & Constantin Zopounidis & Christophe Germain, 2016. "Operational and economic efficiency analysis of public hospitals in Greece," Post-Print hal-01414677, HAL.
    18. Wai‐Peng Wong & Qiang Deng & Ming-Lang Tseng & Loo‐Hay Lee & Chee‐Wooi Hooy, 2014. "A Stochastic Setting To Bank Financial Performance For Refining Efficiency Estimates," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 21(4), pages 225-245, October.
    19. Feng Li & Qingyuan Zhu & Liang Liang, 2019. "A new data envelopment analysis based approach for fixed cost allocation," Annals of Operations Research, Springer, vol. 274(1), pages 347-372, March.
    20. Filip Fidanoski & Kiril Simeonovski & Violeta Cvetkoska, 2021. "Energy Efficiency in OECD Countries: A DEA Approach," Energies, MDPI, vol. 14(4), pages 1-21, February.

    More about this item

    Keywords

    Forecasting and Simulation: Models and Applications; Input?Output Models;

    JEL classification:

    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa15p1229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gunther Maier (email available below). General contact details of provider: http://www.ersa.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.