IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v94y2024ics0038012124001423.html
   My bibliography  Save this article

Environmental performance evaluation in the forest sector: An extended stochastic data envelopment analysis approach

Author

Listed:
  • Amirteimoori, Alireza
  • Cezar, Asunur
  • Zadmirzaei, Majid
  • Susaeta, Andres

Abstract

This study addresses the global concern about undesirable outputs in the Forest Sector. We propose two innovative models, namely a directional weak disposable DEA model and an extended stochastic DEA model, to measure environmental efficiency. These models make a significant contribution to the field by specifically assessing the uncertain environmental efficiency of the forest sector. We validated our proposed models by conducting an empirical application using the United Nations Economic Commission for Europe (UNECE) forest sector dataset. The study examines important outputs such as above ground biomass stock, export unit prices of industrial roundwood, wood removals (desirable outputs), and CO2 emissions from wildfires (undesirable output). The results demonstrate that our novel stochastic weak disposability DEA model outperforms traditional approaches when the second scenario is applied. Specifically, the average technical efficiency (TE) score decreases to 0.92, and the number of efficient units reduces to 27, representing an approximate improvement of 55 %. Furthermore, the reduction rate of CO2 emissions is 4.09 % lower than the benchmark. Hence, our extended novel stochastic weak disposability DEA approach enhances the assessment of efficiency and inefficiency in decision-making units, contributing to the mitigation of risk and uncertainty. It also improves overall environmental performance in forest management.

Suggested Citation

  • Amirteimoori, Alireza & Cezar, Asunur & Zadmirzaei, Majid & Susaeta, Andres, 2024. "Environmental performance evaluation in the forest sector: An extended stochastic data envelopment analysis approach," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
  • Handle: RePEc:eee:soceps:v:94:y:2024:i:c:s0038012124001423
    DOI: 10.1016/j.seps.2024.101943
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012124001423
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2024.101943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), 2011. "Handbook on Data Envelopment Analysis," International Series in Operations Research and Management Science, Springer, number 978-1-4419-6151-8, December.
    2. Charles, Vincent & Kumar, Mukesh & Irene Kavitha, S., 2012. "Measuring the efficiency of assembled printed circuit boards with undesirable outputs using data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 136(1), pages 194-206.
    3. Avilés-Sacoto, Estefanía Caridad & Avilés-Sacoto, Sonia Valeria & Güemes-Castorena, David & Cook, Wade D., 2021. "Environmental performance evaluation: A state-level DEA analysis," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    4. Jin, Jingliang & Zhou, Dequn & Zhou, Peng, 2014. "Measuring environmental performance with stochastic environmental DEA: The case of APEC economies," Economic Modelling, Elsevier, vol. 38(C), pages 80-86.
    5. Kao, Chiang & Hwang, Shiuh-Nan, 2021. "Measuring the effects of undesirable outputs on the efficiency of production units," European Journal of Operational Research, Elsevier, vol. 292(3), pages 996-1003.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Susaeta, Andres & Sancewich, Brian & Adams, Damian & Moreno, Paulo C., 2019. "Ecosystem Services Production Efficiency of Longleaf Pine Under Changing Weather Conditions," Ecological Economics, Elsevier, vol. 156(C), pages 24-34.
    8. Rashidi, Kamran & Farzipoor Saen, Reza, 2015. "Measuring eco-efficiency based on green indicators and potentials in energy saving and undesirable output abatement," Energy Economics, Elsevier, vol. 50(C), pages 18-26.
    9. Cooper, William W. & Deng, H. & Huang, Zhimin & Li, Susan X., 2004. "Chance constrained programming approaches to congestion in stochastic data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 155(2), pages 487-501, June.
    10. Afzalinejad, Mohammad, 2020. "Reverse efficiency measures for environmental assessment in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    11. Timo Kuosmanen, 2005. "Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1077-1082.
    12. Zanella, Andreia & Camanho, Ana S. & Dias, Teresa G., 2015. "Undesirable outputs and weighting schemes in composite indicators based on data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 245(2), pages 517-530.
    13. Kumar Mandal, Sabuj & Madheswaran, S., 2010. "Environmental efficiency of the Indian cement industry: An interstate analysis," Energy Policy, Elsevier, vol. 38(2), pages 1108-1118, February.
    14. Vincent Charles & Ioannis E. Tsolas & Tatiana Gherman, 2018. "Satisficing data envelopment analysis: a Bayesian approach for peer mining in the banking sector," Annals of Operations Research, Springer, vol. 269(1), pages 81-102, October.
    15. O. B. Olesen & N. C. Petersen, 1995. "Chance Constrained Efficiency Evaluation," Management Science, INFORMS, vol. 41(3), pages 442-457, March.
    16. William W. Cooper & Zhimin Huang & Susan X. Li, 2011. "Chance-Constrained DEA," International Series in Operations Research & Management Science, in: William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), Handbook on Data Envelopment Analysis, chapter 0, pages 211-240, Springer.
    17. Omrani, Hashem & Emrouznejad, Ali & Shamsi, Meisam & Fahimi, Pegah, 2022. "Evaluation of insurance companies considering uncertainty: A multi-objective network data envelopment analysis model with negative data and undesirable outputs," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    18. Alireza Amirteimoori & Vincent Charles & Saber Mehdizadeh, 2023. "Stochastic data envelopment analysis in the presence of undesirable outputs," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(12), pages 2619-2632, December.
    19. Rajiv D. Banker & Richard C. Morey, 1986. "Efficiency Analysis for Exogenously Fixed Inputs and Outputs," Operations Research, INFORMS, vol. 34(4), pages 513-521, August.
    20. Saber Mehdizadeh & Alireza Amirteimoori & Vincent Charles & Mohammad Hassan Behzadi & Sohrab Kordrostami, 2021. "Measuring the efficiency of two-stage network processes: A satisficing DEA approach," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(2), pages 354-366, February.
    21. Mehdiloo, Mahmood & Podinovski, Victor V., 2019. "Selective strong and weak disposability in efficiency analysis," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1154-1169.
    22. Atakelty Hailu & Terrence S. Veeman, 2001. "Non-parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 605-616.
    23. Podinovski, Victor V. & Kuosmanen, Timo, 2011. "Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions," European Journal of Operational Research, Elsevier, vol. 211(3), pages 577-585, June.
    24. O. Olesen, 2006. "Comparing and Combining Two Approaches for Chance Constrained DEA," Journal of Productivity Analysis, Springer, vol. 26(2), pages 103-119, October.
    25. Lu, Ching-Cheng & Chiu, Yung-Ho & Shyu, Ming-Kuang & Lee, Jen-Hui, 2013. "Measuring CO2 emission efficiency in OECD countries: Application of the Hybrid Efficiency model," Economic Modelling, Elsevier, vol. 32(C), pages 130-135.
    26. Rolf Färe & Shawna Grosskopf, 2003. "Nonparametric Productivity Analysis with Undesirable Outputs: Comment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(4), pages 1070-1074.
    27. Amirteimoori, Alireza & Kazemi Matin, Reza & Yadollahi, Amir Hossein, 2024. "Stochastic resource reallocation in two-stage production processes with undesirable outputs: An empirical study on the power industry," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    28. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    29. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    30. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Returns to scale and damages to scale under natural and managerial disposability: Strategy, efficiency and competitiveness of petroleum firms," Energy Economics, Elsevier, vol. 34(3), pages 645-662.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chu, Junfei & Shao, Caifeng & Emrouznejad, Ali & Wu, Jie & Yuan, Zhe, 2021. "Performance evaluation of organizations considering economic incentives for emission reduction: A carbon emission permit trading approach," Energy Economics, Elsevier, vol. 101(C).
    2. Barnabé Walheer, 2020. "Output, input, and undesirable output interconnections in data envelopment analysis: convexity and returns-to-scale," Annals of Operations Research, Springer, vol. 284(1), pages 447-467, January.
    3. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    4. Mehdiloo, Mahmood & Podinovski, Victor V., 2021. "Strong, weak and Farrell efficient frontiers of technologies satisfying different production assumptions," European Journal of Operational Research, Elsevier, vol. 294(1), pages 295-311.
    5. Shih-Heng Yu, 2019. "Benchmarking and Performance Evaluation Towards the Sustainable Development of Regions in Taiwan: A Minimum Distance-Based Measure with Undesirable Outputs in Additive DEA," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(3), pages 1323-1348, August.
    6. Alireza Amirteimoori & Biresh K. Sahoo & Saber Mehdizadeh, 2023. "Data envelopment analysis for scale elasticity measurement in the stochastic case: with an application to Indian banking," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-36, December.
    7. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.
    8. Chu, Junfei & Hou, Tianteng & Li, Feng & Yuan, Zhe, 2024. "Dynamic bargaining game DEA carbon emissions abatement allocation and the Nash equilibrium," Energy Economics, Elsevier, vol. 134(C).
    9. Podinovski, Victor V., 2019. "Direct estimation of marginal characteristics of nonparametric production frontiers in the presence of undesirable outputs," European Journal of Operational Research, Elsevier, vol. 279(1), pages 258-276.
    10. Amirteimoori, Alireza & Kazemi Matin, Reza & Yadollahi, Amir Hossein, 2024. "Stochastic resource reallocation in two-stage production processes with undesirable outputs: An empirical study on the power industry," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    11. George Halkos & Nickolaos Tzeremes, 2013. "National culture and eco-efficiency: an application of conditional partial nonparametric frontiers," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(4), pages 423-441, October.
    12. Sahoo, Biresh K. & Luptacik, Mikulas & Mahlberg, Bernhard, 2011. "Alternative measures of environmental technology structure in DEA: An application," European Journal of Operational Research, Elsevier, vol. 215(3), pages 750-762, December.
    13. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    14. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    15. Mehdiloo, Mahmood & Podinovski, Victor V., 2019. "Selective strong and weak disposability in efficiency analysis," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1154-1169.
    16. Tae-Woong Yang & Joon-Ho Na & Hun-Koo Ha, 2019. "Comparative Analysis of Production Possibility Frontier in Measuring Social Efficiency with Data Envelopment Analysis: An Application to Airports," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    17. Abad, Arnaud & Briec, Walter, 2019. "On the axiomatic of pollution-generating technologies: Non-parametric production analysis," European Journal of Operational Research, Elsevier, vol. 277(1), pages 377-390.
    18. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions," European Journal of Operational Research, Elsevier, vol. 227(1), pages 182-189.
    19. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    20. Chen, Chien-Ming, 2013. "A critique of non-parametric efficiency analysis in energy economics studies," Energy Economics, Elsevier, vol. 38(C), pages 146-152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:94:y:2024:i:c:s0038012124001423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.