IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp997.html
   My bibliography  Save this paper

Do Google Searches Help in Nowcasting Private Consumption?: A Real-Time Evidence for the US

Author

Listed:
  • Konstantin A. Kholodilin
  • Maximilian Podstawski
  • Boriss Siliverstovs

Abstract

In this paper, we investigate whether the Google search activity can help in nowcasting the year-on-year growth rates of monthly US private consumption using a real-time data set. The Google-based forecasts are compared to those based on a benchmark AR(1) model and the models including the consumer surveys and financial indicators. According to the Diebold-Mariano test of equal predictive ability, the null hypothesis can be rejected suggesting that Google-based forecasts are significantly more accurate than those of the benchmark model. At the same time, the corresponding null hypothesis cannot be rejected for models with consumer surveys and financial variables. Moreover, when we apply the test of superior predictive ability (Hansen, 2005) that controls for possible data-snooping biases, we are able to reject the null hypothesis that the benchmark model is not inferior to any alternative model forecasts. Furthermore, the results of the model confidence set (MCS) procedure (Hansen et al., 2005) suggest that the autoregressive benchmark is not selected into a set of the best forecasting models. Apart from several Google-based models, the MCS contains also some models including survey-based indicators and financial variables. We conclude that Google searches do help improving the nowcasts of the private consumption in US.

Suggested Citation

  • Konstantin A. Kholodilin & Maximilian Podstawski & Boriss Siliverstovs, 2010. "Do Google Searches Help in Nowcasting Private Consumption?: A Real-Time Evidence for the US," Discussion Papers of DIW Berlin 997, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp997
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.356220.de/dp997.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Google indicators; real-time nowcasting; principal components; US private consumption;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.