IDEAS home Printed from https://ideas.repec.org/p/wis/wpaper/2101.html
   My bibliography  Save this paper

Minimum cost spanning tree problems as value sharing problems

Author

Listed:
  • Christian Trudeau

    (Department of Economics, University of Windsor)

Abstract

Minimum cost spanning tree (mcst) problems study situations in which agents must connect to a source to obtain a good, with the cost of building an edge being independent of the number of users. We reinterpret mcst problems as value sharing problems, and show that the folk and cycle-complete solutions, two of the most studied cost-sharing solutions for mcst problems, do not share values in a consistent way. More precisely, two mcst problems yielding the same value sharing problem might lead to value being shared in different ways. However, they satisfy a weaker version of the property that applies only to elementary problems, in which the cost on an edge can only be 0 or 1. The folk solution satisfies the version related to the public approach, while the cycle-complete solution satisfies the one related to the private approach, which differ depending if we allow a group to use the nodes of other agents or only their own nodes. We then build axiomatizations built on these properties. While the two solutions are usually seen as competitors in the private approach, the results point towards a different interpretation: the two solutions are based on different interpretations of the mcst problem, but are otherwise conceptually very close.

Suggested Citation

  • Christian Trudeau, 2021. "Minimum cost spanning tree problems as value sharing problems," Working Papers 2101, University of Windsor, Department of Economics.
  • Handle: RePEc:wis:wpaper:2101
    as

    Download full text from publisher

    File URL: http://web2.uwindsor.ca/economics/RePEc/wis/pdf/2101.pdf
    File Function: First version, 2021
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bergantiños, Gustavo & Lorenzo, Leticia & Lorenzo-Freire, Silvia, 2011. "A generalization of obligation rules for minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 211(1), pages 122-129, May.
    2. Gustavo Bergantiños & Silvia Lorenzo-Freire, 2008. "A characterization of optimistic weighted Shapley rules in minimum cost spanning tree problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 35(3), pages 523-538, June.
    3. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Other publications TiSEM 56ea8c64-a05f-4b3f-ab61-9, Tilburg University, School of Economics and Management.
    4. Leticia Lorenzo & Silvia Lorenzo-Freire, 2009. "A characterization of Kruskal sharing rules for minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 107-126, March.
    5. Bergantiños, Gustavo & Vidal-Puga, Juan, 2009. "Additivity in minimum cost spanning tree problems," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 38-42, January.
    6. Trudeau, Christian & Vidal-Puga, Juan, 2020. "Clique games: A family of games with coincidence between the nucleolus and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 8-14.
    7. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "On the irreducible core and the equal remaining obligations rule of minimum cost spanning extension problems," Discussion Paper 1994-106, Tilburg University, Center for Economic Research.
    8. Bogomolnaia, Anna & Moulin, Hervé, 2010. "Sharing a minimal cost spanning tree: Beyond the Folk solution," Games and Economic Behavior, Elsevier, vol. 69(2), pages 238-248, July.
    9. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
    10. Trudeau, Christian, 2012. "A new stable and more responsive cost sharing solution for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 75(1), pages 402-412.
    11. Trudeau, Christian & Vidal-Puga, Juan, 2017. "On the set of extreme core allocations for minimal cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 169(C), pages 425-452.
    12. Feltkamp, V. & Tijs, S.H. & Muto, S., 1994. "Minimum cost spanning extension problems : The proportional rule and the decentralized rule," Other publications TiSEM 2c6cd46b-7e72-4262-a479-3, Tilburg University, School of Economics and Management.
    13. Bloch, Francis & de Clippel, Geoffroy, 2010. "Cores of combined games," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2424-2434, November.
    14. Tijs, Stef & Branzei, Rodica & Moretti, Stefano & Norde, Henk, 2006. "Obligation rules for minimum cost spanning tree situations and their monotonicity properties," European Journal of Operational Research, Elsevier, vol. 175(1), pages 121-134, November.
    15. Kar, Anirban, 2002. "Axiomatization of the Shapley Value on Minimum Cost Spanning Tree Games," Games and Economic Behavior, Elsevier, vol. 38(2), pages 265-277, February.
    16. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Gustavo Bergantiños & Juan Vidal-Puga, 2021. "A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 73-100, March.
    18. Gustavo Bergantiños & Juan Vidal-Puga, 2007. "The optimistic TU game in minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(2), pages 223-239, October.
    19. Bergantinos, Gustavo & Lorenzo-Freire, Silvia, 2008. ""Optimistic" weighted Shapley rules in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 185(1), pages 289-298, February.
    20. Bahel, Eric & Trudeau, Christian, 2019. "A cost sharing example in which subsidies are necessary for stability," Economics Letters, Elsevier, vol. 185(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergantiños, Gustavo & Vidal-Puga, Juan, 2020. "Cooperative games for minimum cost spanning tree problems," MPRA Paper 104911, University Library of Munich, Germany.
    2. María Gómez-Rúa & Juan Vidal-Puga, 2017. "A monotonic and merge-proof rule in minimum cost spanning tree situations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 813-826, March.
    3. Gustavo Bergantiños & Juan Vidal-Puga, 2021. "A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 73-100, March.
    4. Gustavo Bergantiños & Juan Vidal-Puga, 2015. "Characterization of monotonic rules in minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 835-868, November.
    5. Bergantiños, Gustavo & Lorenzo, Leticia & Lorenzo-Freire, Silvia, 2011. "A generalization of obligation rules for minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 211(1), pages 122-129, May.
    6. Gustavo Bergantiños & María Gómez-Rúa, 2015. "An axiomatic approach in minimum cost spanning tree problems with groups," Annals of Operations Research, Springer, vol. 225(1), pages 45-63, February.
    7. José-Manuel Giménez-Gómez & Josep E Peris & Begoña Subiza, 2020. "An egalitarian approach for sharing the cost of a spanning tree," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
    8. Bergantiños, Gustavo & Kar, Anirban, 2010. "On obligation rules for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 69(2), pages 224-237, July.
    9. Hernández, Penélope & Peris, Josep E. & Silva-Reus, José A., 2016. "Strategic sharing of a costly network," Journal of Mathematical Economics, Elsevier, vol. 66(C), pages 72-82.
    10. Kusunoki, Yoshifumi & Tanino, Tetsuzo, 2017. "Investigation on irreducible cost vectors in minimum cost arborescence problems," European Journal of Operational Research, Elsevier, vol. 261(1), pages 214-221.
    11. Hernández, Penélope & Peris, Josep E. & Vidal-Puga, Juan, 2023. "A non-cooperative approach to the folk rule in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 307(2), pages 922-928.
    12. Christian Trudeau, 2014. "Characterizations of the cycle-complete and folk solutions for minimum cost spanning tree problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(4), pages 941-957, April.
    13. Eric Bahel & Christian Trudeau, 2017. "Minimum incoming cost rules for arborescences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 49(2), pages 287-314, August.
    14. Trudeau, Christian, 2012. "A new stable and more responsive cost sharing solution for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 75(1), pages 402-412.
    15. Dutta, Bhaskar & Mishra, Debasis, 2012. "Minimum cost arborescences," Games and Economic Behavior, Elsevier, vol. 74(1), pages 120-143.
    16. Christian Trudeau, 2014. "Linking the Kar and folk solutions through a problem separation property," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(4), pages 845-870, November.
    17. Gustavo Bergantiños & Leticia Lorenzo, 2021. "Cost additive rules in minimum cost spanning tree problems with multiple sources," Annals of Operations Research, Springer, vol. 301(1), pages 5-15, June.
    18. Gustavo Bergantiños & Youngsub Chun & Eunju Lee & Leticia Lorenzo, 2022. "The Folk Rule for Minimum Cost Spanning Tree Problems with Multiple Sources," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 24(01), pages 1-36, March.
    19. Hougaard, Jens Leth & Tvede, Mich, 2012. "Truth-telling and Nash equilibria in minimum cost spanning tree models," European Journal of Operational Research, Elsevier, vol. 222(3), pages 566-570.
    20. Eric Bahel & Christian Trudeau, 2016. "From spanning trees to arborescences: new and extended cost sharing solutions," Working Papers 1601, University of Windsor, Department of Economics.

    More about this item

    Keywords

    Minimum cost spanning tree; value sharing; cycle-complete solution; folk solution.;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wis:wpaper:2101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christian Trudeau (email available below). General contact details of provider: https://edirc.repec.org/data/dwindca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.