IDEAS home Printed from https://ideas.repec.org/a/wsi/igtrxx/v24y2022i01ns0219198921500079.html
   My bibliography  Save this article

The Folk Rule for Minimum Cost Spanning Tree Problems with Multiple Sources

Author

Listed:
  • Gustavo Bergantiños

    (Economics, Society and Territory, Universidade de Vigo. 36310, Vigo. Spain)

  • Youngsub Chun

    (��Department of Economics, Seoul National University, Seoul 08826, Korea)

  • Eunju Lee

    (��Department of Economics, University of California, Davis, Davis, CA 95616, USA)

  • Leticia Lorenzo

    (Economics, Society and Territory, Universidade de Vigo. 36310, Vigo. Spain)

Abstract

In this paper, we introduce minimum cost spanning tree problems with multiple sources. This new setting is an extension of the classical model where there is a single source. We extend several definitions of the folk rule, the most prominent rule in the classical model, to this new context: first as the Shapley value of the irreducible game; second as an obligation rule; third as a partition rule and finally through a cone-wise decomposition. We prove that all the definitions provide the same cost allocation and present two axiomatic characterizations.

Suggested Citation

  • Gustavo Bergantiños & Youngsub Chun & Eunju Lee & Leticia Lorenzo, 2022. "The Folk Rule for Minimum Cost Spanning Tree Problems with Multiple Sources," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 24(01), pages 1-36, March.
  • Handle: RePEc:wsi:igtrxx:v:24:y:2022:i:01:n:s0219198921500079
    DOI: 10.1142/S0219198921500079
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219198921500079
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219198921500079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bergantiños, Gustavo & Lorenzo, Leticia & Lorenzo-Freire, Silvia, 2011. "A generalization of obligation rules for minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 211(1), pages 122-129, May.
    2. Bergantiños, Gustavo & Kar, Anirban, 2010. "On obligation rules for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 69(2), pages 224-237, July.
    3. Gustavo Bergantiños & Silvia Lorenzo-Freire, 2008. "A characterization of optimistic weighted Shapley rules in minimum cost spanning tree problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 35(3), pages 523-538, June.
    4. Norde, H.W. & Moretti, S. & Tijs, S.H., 2004. "Minimum cost spanning tree games and population monotonic allocation schemes," Other publications TiSEM bcaf99d7-5b94-437f-a89c-d, Tilburg University, School of Economics and Management.
    5. Rosenthal, Edward C., 1987. "The minimum cost spanning forest game," Economics Letters, Elsevier, vol. 23(4), pages 355-357.
    6. Dutta, Bhaskar & Kar, Anirban, 2004. "Cost monotonicity, consistency and minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 48(2), pages 223-248, August.
    7. Gouveia, Luis & Leitner, Markus & Ljubić, Ivana, 2014. "Hop constrained Steiner trees with multiple root nodes," European Journal of Operational Research, Elsevier, vol. 236(1), pages 100-112.
    8. Tijs, Stef & Branzei, Rodica & Moretti, Stefano & Norde, Henk, 2006. "Obligation rules for minimum cost spanning tree situations and their monotonicity properties," European Journal of Operational Research, Elsevier, vol. 175(1), pages 121-134, November.
    9. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
    10. Brânzei, R. & Moretti, S. & Norde, H.W. & Tijs, S.H., 2004. "The P-value for cost sharing in minimum cost spanning tree situations," Other publications TiSEM b41d77ef-69cb-4ffa-8309-d, Tilburg University, School of Economics and Management.
    11. Bergantinos, Gustavo & Lorenzo-Freire, Silvia, 2008. ""Optimistic" weighted Shapley rules in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 185(1), pages 289-298, February.
    12. Norde, Henk & Moretti, Stefano & Tijs, Stef, 2004. "Minimum cost spanning tree games and population monotonic allocation schemes," European Journal of Operational Research, Elsevier, vol. 154(1), pages 84-97, April.
    13. Daniel Granot & Frieda Granot, 1992. "Computational Complexity of a Cost Allocation Approach to a Fixed Cost Spanning Forest Problem," Mathematics of Operations Research, INFORMS, vol. 17(4), pages 765-780, November.
    14. Leticia Lorenzo & Silvia Lorenzo-Freire, 2009. "A characterization of Kruskal sharing rules for minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 107-126, March.
    15. Bergantiños, Gustavo & Vidal-Puga, Juan, 2009. "Additivity in minimum cost spanning tree problems," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 38-42, January.
    16. Stefano Moretti & Rodica Branzei & Henk Norde & Stef Tijs, 2004. "The P-value for cost sharing in minimum," Theory and Decision, Springer, vol. 56(1), pages 47-61, April.
    17. Gustavo Bergantinos & Juan Vidal-Puga, 2008. "On Some Properties of Cost Allocation Rules in Minimum Cost Spanning Tree Problems," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 2(3), pages 251-267, December.
    18. Gustavo Bergantiños & Juan Vidal-Puga, 2015. "Characterization of monotonic rules in minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 835-868, November.
    19. Gustavo Bergantiños & Leticia Lorenzo & Silvia Lorenzo-Freire, 2010. "The family of cost monotonic and cost additive rules in minimum cost spanning tree problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 34(4), pages 695-710, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gustavo Bergantiños & Leticia Lorenzo, 2021. "Cost additive rules in minimum cost spanning tree problems with multiple sources," Annals of Operations Research, Springer, vol. 301(1), pages 5-15, June.
    2. Bergantiños, Gustavo & Navarro, Adriana, 2019. "Characterization of the painting rule for multi-source minimal cost spanning tree problems," MPRA Paper 93266, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gustavo Bergantiños & Leticia Lorenzo, 2021. "Cost additive rules in minimum cost spanning tree problems with multiple sources," Annals of Operations Research, Springer, vol. 301(1), pages 5-15, June.
    2. Bergantiños, Gustavo & Vidal-Puga, Juan, 2020. "Cooperative games for minimum cost spanning tree problems," MPRA Paper 104911, University Library of Munich, Germany.
    3. María Gómez-Rúa & Juan Vidal-Puga, 2017. "A monotonic and merge-proof rule in minimum cost spanning tree situations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 813-826, March.
    4. Gustavo Bergantiños & Juan Vidal-Puga, 2015. "Characterization of monotonic rules in minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 835-868, November.
    5. Bergantiños, Gustavo & Lorenzo, Leticia & Lorenzo-Freire, Silvia, 2011. "A generalization of obligation rules for minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 211(1), pages 122-129, May.
    6. Bergantiños, Gustavo & Kar, Anirban, 2010. "On obligation rules for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 69(2), pages 224-237, July.
    7. Bergantiños, G. & Navarro-Ramos, A., 2019. "The folk rule through a painting procedure for minimum cost spanning tree problems with multiple sources," Mathematical Social Sciences, Elsevier, vol. 99(C), pages 43-48.
    8. Gustavo Bergantiños & María Gómez-Rúa, 2015. "An axiomatic approach in minimum cost spanning tree problems with groups," Annals of Operations Research, Springer, vol. 225(1), pages 45-63, February.
    9. Gustavo Bergantiños & Juan Vidal-Puga, 2021. "A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 73-100, March.
    10. Hernández, Penélope & Peris, Josep E. & Silva-Reus, José A., 2016. "Strategic sharing of a costly network," Journal of Mathematical Economics, Elsevier, vol. 66(C), pages 72-82.
    11. Gustavo Bergantiños & María Gómez-Rúa, 2010. "Minimum cost spanning tree problems with groups," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 43(2), pages 227-262, May.
    12. Gustavo Bergantiños & Leticia Lorenzo & Silvia Lorenzo-Freire, 2010. "The family of cost monotonic and cost additive rules in minimum cost spanning tree problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 34(4), pages 695-710, April.
    13. Bergantiños, G. & Gómez-Rúa, M. & Llorca, N. & Pulido, M. & Sánchez-Soriano, J., 2014. "A new rule for source connection problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 780-788.
    14. Kusunoki, Yoshifumi & Tanino, Tetsuzo, 2017. "Investigation on irreducible cost vectors in minimum cost arborescence problems," European Journal of Operational Research, Elsevier, vol. 261(1), pages 214-221.
    15. Norde, H.W., 2013. "The Degree and Cost Adjusted Folk Solution for Minimum Cost Spanning Tree Games," Other publications TiSEM 7ac3a323-f736-46a6-b568-c, Tilburg University, School of Economics and Management.
    16. Norde, H.W., 2013. "The Degree and Cost Adjusted Folk Solution for Minimum Cost Spanning Tree Games," Discussion Paper 2013-039, Tilburg University, Center for Economic Research.
    17. Bergantinos, Gustavo & Lorenzo-Freire, Silvia, 2008. ""Optimistic" weighted Shapley rules in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 185(1), pages 289-298, February.
    18. Christian Trudeau, 2023. "Minimum cost spanning tree problems as value sharing problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 253-272, March.
    19. Gomez-Rua, Maria & Vidal-Puga, Juan, 2006. "No advantageous merging in minimum cost spanning tree problems," MPRA Paper 601, University Library of Munich, Germany.
    20. Norde, Henk, 2019. "The degree and cost adjusted folk solution for minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 113(C), pages 734-742.

    More about this item

    Keywords

    Minimum cost spanning tree problems; multiple sources; folk rule; axiomatic characterizations;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:igtrxx:v:24:y:2022:i:01:n:s0219198921500079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/igtr/igtr.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.