IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/9135.html
   My bibliography  Save this paper

Cyber Resilience of Autonomous Mobility Systems : Cyber Attacks and Resilience-Enhancing Strategies

Author

Listed:
  • Zou,Bo
  • Choobchian,Pooria
  • Rozenberg,Julie

Abstract

The increasing cyber connectivity of vehicles and between vehicles and infrastructure will drastically reshape mobility in the coming decades. Although the advent of connected mobility is expected to benefit travelers and society by smoothing traffic, improving rider convenience, and reducing accidents, the augmented cyber components in connected and autonomous vehicles and related infrastructure also give rise to cyber attacks on the transportation system. Yet, little attention has been paid to transportation cyber resilience. This paper thus proposes an investigation on this topic with a comprehensive literature review. Cyber components and plausible autonomous mobility systems operation scenarios are discussed, before identifying possible cyber attacks to autonomous mobility systems at the vehicle and system levels. The discussion then moves to existing practices to enhance cybersecurity, and several strategies are investigated toward enhancing autonomous mobility system cyber resilience. At the vehicle level, creating layers and separation to reduce cyber component connectivity and deploying an independent procedure for data collection and processing are important in vehicle design and manufacturing. At the system level, recommended strategies include keeping redundancy in transportation capacity, maintaining a separate road network, and deploying different sub-autonomous mobility systems.

Suggested Citation

  • Zou,Bo & Choobchian,Pooria & Rozenberg,Julie, 2020. "Cyber Resilience of Autonomous Mobility Systems : Cyber Attacks and Resilience-Enhancing Strategies," Policy Research Working Paper Series 9135, The World Bank.
  • Handle: RePEc:wbk:wbrwps:9135
    as

    Download full text from publisher

    File URL: http://documents.worldbank.org/curated/en/899641580412783626/pdf/Cyber-Resilience-of-Autonomous-Mobility-Systems-Cyber-Attacks-and-Resilience-Enhancing-Strategies.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Igor Linkov & Daniel A. Eisenberg & Kenton Plourde & Thomas P. Seager & Julia Allen & Alex Kott, 2013. "Resilience metrics for cyber systems," Environment Systems and Decisions, Springer, vol. 33(4), pages 471-476, December.
    2. Itf, 2018. "Safer Roads with Automated Vehicles?," International Transport Forum Policy Papers 55, OECD Publishing.
    3. Araz Taeihagh & Hazel Si Min Lim, 2019. "Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 103-128, January.
    4. Hazel Si Min Lim & Araz Taeihagh, 2018. "Autonomous Vehicles for Smart and Sustainable Cities: An In-Depth Exploration of Privacy and Cybersecurity Implications," Energies, MDPI, vol. 11(5), pages 1-23, April.
    5. J. Park & T. P. Seager & P. S. C. Rao & M. Convertino & I. Linkov, 2013. "Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 356-367, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Zou & Pooria Choobchian & Julie Rozenberg, 2021. "Cyber resilience of autonomous mobility systems: cyber-attacks and resilience-enhancing strategies," Journal of Transportation Security, Springer, vol. 14(3), pages 137-155, December.
    2. Lee, Dasom & Hess, David J., 2020. "Regulations for on-road testing of connected and automated vehicles: Assessing the potential for global safety harmonization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 85-98.
    3. Hazel Si Min Lim & Araz Taeihagh, 2019. "Algorithmic Decision-Making in AVs: Understanding Ethical and Technical Concerns for Smart Cities," Sustainability, MDPI, vol. 11(20), pages 1-28, October.
    4. Wood, Matthew D. & Wells, Emily M. & Rice, Glenn & Linkov, Igor, 2019. "Quantifying and mapping resilience within large organizations," Omega, Elsevier, vol. 87(C), pages 117-126.
    5. Mikolaj Firlej & Araz Taeihagh, 2021. "Regulating human control over autonomous systems," Regulation & Governance, John Wiley & Sons, vol. 15(4), pages 1071-1091, October.
    6. Nicole R. Sikula & James W. Mancillas & Igor Linkov & John A. McDonagh, 2015. "Risk management is not enough: a conceptual model for resilience and adaptation-based vulnerability assessments," Environment Systems and Decisions, Springer, vol. 35(2), pages 219-228, June.
    7. Araz Taeihagh & M Ramesh & Michael Howlett, 2021. "Assessing the regulatory challenges of emerging disruptive technologies," Regulation & Governance, John Wiley & Sons, vol. 15(4), pages 1009-1019, October.
    8. Danielsson, Erna & Nyhlén, Jon & Olausson, Pär M., 2020. "Strategic planning for power shortages," Energy Policy, Elsevier, vol. 137(C).
    9. Shen, Lijuan & Cassottana, Beatrice & Tang, Loon Ching, 2018. "Statistical trend tests for resilience of power systems," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 138-147.
    10. Timothy L. McDaniels & Stephanie E. Chang & David Hawkins & Gerard Chew & Holly Longstaff, 2015. "Towards disaster-resilient cities: an approach for setting priorities in infrastructure mitigation efforts," Environment Systems and Decisions, Springer, vol. 35(2), pages 252-263, June.
    11. Liliana Andrei & Oana Luca & Florian Gaman, 2022. "Insights from User Preferences on Automated Vehicles: Influence of Socio-Demographic Factors on Value of Time in Romania Case," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    12. Mujjuni, F. & Betts, T. & To, L.S. & Blanchard, R.E., 2021. "Resilience a means to development: A resilience assessment framework and a catalogue of indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. H. Klammler & P. S. C. Rao & K. Hatfield, 2018. "Modeling dynamic resilience in coupled technological-social systems subjected to stochastic disturbance regimes," Environment Systems and Decisions, Springer, vol. 38(1), pages 140-159, March.
    14. Dubaniowski, Mateusz Iwo & Heinimann, Hans Rudolf, 2021. "Framework for modeling interdependencies between households, businesses, and infrastructure system, and their response to disruptions—application," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    15. Charles David A. Icasiano & Araz Taeihagh, 2021. "Governance of the Risks of Ridesharing in Southeast Asia: An In-Depth Analysis," Sustainability, MDPI, vol. 13(11), pages 1-32, June.
    16. Claudio M. Rocco & Kash Barker & Jose Moronta, 2022. "Determining the best algorithm to detect community structures in networks: application to power systems," Environment Systems and Decisions, Springer, vol. 42(2), pages 251-264, June.
    17. Inga Ulnicane & William Knight & Tonii Leach & Bernd Carsten Stahl & Winter-Gladys Wanjiku, 2021. "Framing governance for a contested emerging technology:insights from AI policy [The next space race is Artificial Intelligence]," Policy and Society, Darryl S. Jarvis and M. Ramesh, vol. 40(2), pages 158-177.
    18. Arto O Salonen & Noora Haavisto, 2019. "Towards Autonomous Transportation. Passengers’ Experiences, Perceptions and Feelings in a Driverless Shuttle Bus in Finland," Sustainability, MDPI, vol. 11(3), pages 1-19, January.
    19. Soteropoulos, Aggelos & Mitteregger, Mathias & Berger, Martin & Zwirchmayr, Jakob, 2020. "Automated drivability: Toward an assessment of the spatial deployment of level 4 automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 64-84.
    20. Foroughi, Behzad & Nhan, Pham Viet & Iranmanesh, Mohammad & Ghobakhloo, Morteza & Nilashi, Mehrbakhsh & Yadegaridehkordi, Elaheh, 2023. "Determinants of intention to use autonomous vehicles: Findings from PLS-SEM and ANFIS," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:9135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.