IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/7538.html
   My bibliography  Save this paper

Contingent liabilities risk management : a credit risk analysis framework for sovereign guarantees and on-lending?country experiences from Colombia, Indonesia, Sweden, and Turkey

Author

Listed:
  • Bachmair,Fritz Florian

Abstract

Sovereign credit guarantees and government on-lending can catalyze private sector investment and fulfill specific policy objectives. However, contingent liabilities stemming from guarantees and contingent assets stemming from on-lending expose governments to risk. Prudent risk management, including risk analysis and measurement, can help identify and mitigate these risks. This paper proposes a four-step structure for analyzing and measuring credit risk: (i) defining key characteristics to determine the choice of a risk analysis approach; (ii) analyzing risk drivers; (iii) quantifying risks; and (iv) applying risk analyses and quantification to the design of risk management tools. This structure is based on an assessment of approaches discussed in academia and applied in practice. The paper demonstrates how the four steps of credit risk management are applied in Colombia, Sweden, and Turkey. It also discusses how the proposed framework is applied in Indonesia as it develops a credit risk management framework for sovereign guarantees. Country experiences show that although sovereign risk managers can draw on insights from credit risk management in the private sector, academic literature, and practices in other countries, approaches to risk management need to be highly context-specific. Key differentiating factors include characteristics of the guarantee and on-lending portfolio, the sovereign?s specific risk exposure, the availability of market information and data, and resources and capacity in the public sector. Developing a sound risk analysis and measurement framework requires significant investments in resources, capacity building, and time. Governments should view this process as iterative and long-term.

Suggested Citation

  • Bachmair,Fritz Florian, 2016. "Contingent liabilities risk management : a credit risk analysis framework for sovereign guarantees and on-lending?country experiences from Colombia, Indonesia, Sweden, and Turkey," Policy Research Working Paper Series 7538, The World Bank.
  • Handle: RePEc:wbk:wbrwps:7538
    as

    Download full text from publisher

    File URL: http://documents.worldbank.org/curated/en/138921468195001816/pdf/WPS7538.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    2. Jose Giancarlo Gasha & Mr. Andre O Santos & Mr. Jorge A Chan-Lau & Mr. Carlos I. Medeiros & Mr. Marcos R Souto & Christian Capuano, 2009. "Recent Advances in Credit Risk Modeling," IMF Working Papers 2009/162, International Monetary Fund.
    3. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    4. Aliona Cebotari, 2008. "Contingent Liabilities: Issues and Practice," IMF Working Papers 2008/245, International Monetary Fund.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. World Bank, 2016. "Mozambique Economic Update, December 2016," World Bank Publications - Reports 25744, The World Bank Group.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    2. Sandrine Lardic & Claire Gauthier, 2003. "Un modèle multifactoriel des spreads de crédit : estimation sur panels complets et incomplets," Économie et Prévision, Programme National Persée, vol. 159(3), pages 53-69.
    3. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    4. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
    5. Lambrinoudakis, Costas & Skiadopoulos, George & Gkionis, Konstantinos, 2019. "Capital structure and financial flexibility: Expectations of future shocks," Journal of Banking & Finance, Elsevier, vol. 104(C), pages 1-18.
    6. Ferreira Filipe, Sara & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Pricing default risk: The good, the bad, and the anomaly," Journal of Financial Stability, Elsevier, vol. 26(C), pages 190-213.
    7. Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
    8. Mark Clintworth & Dimitrios Lyridis & Evangelos Boulougouris, 2023. "Financial risk assessment in shipping: a holistic machine learning based methodology," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 90-121, March.
    9. Chengru Hu & Wei Jiang, 2019. "Managerial risk incentives and accounting conservatism," Review of Quantitative Finance and Accounting, Springer, vol. 52(3), pages 781-813, April.
    10. Charitou, Andreas & Dionysiou, Dionysia & Lambertides, Neophytos & Trigeorgis, Lenos, 2013. "Alternative bankruptcy prediction models using option-pricing theory," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2329-2341.
    11. Abdelghani Maddi, 2018. "Analyse scientométrique de la crise économique," CEPN Working Papers 2018-08, Centre d'Economie de l'Université de Paris Nord.
    12. Reisz, Alexander S. & Perlich, Claudia, 2007. "A market-based framework for bankruptcy prediction," Journal of Financial Stability, Elsevier, vol. 3(2), pages 85-131, July.
    13. Alles, Michael G. & Kogan, Alexander & Vasarhelyi, Miklos A., 2008. "Exploiting comparative advantage: A paradigm for value added research in accounting information systems," International Journal of Accounting Information Systems, Elsevier, vol. 9(4), pages 202-215.
    14. Marielle de Jong & Lauren Stagnol, 2016. "A fundamental bond index including solvency criteria," Journal of Asset Management, Palgrave Macmillan, vol. 17(4), pages 280-294, July.
    15. Duc Hong Vo & Binh Ninh Vo Pham & Chi Minh Ho & Michael McAleer, 2019. "Corporate Financial Distress of Industry Level Listings in Vietnam," JRFM, MDPI, vol. 12(4), pages 1-17, September.
    16. Giulio Bottazzi & Marco Grazzi & Angelo Secchi & Federico Tamagni, 2011. "Financial and economic determinants of firm default," Journal of Evolutionary Economics, Springer, vol. 21(3), pages 373-406, August.
    17. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    18. Nejadmalayeri, Ali, 2021. "Asset liquidity, business risk, and beta," Global Finance Journal, Elsevier, vol. 48(C).
    19. Adler Haymans Manurung & Derwin Suhartono & Benny Hutahayan & Noptovius Halimawan, 2023. "Probability Bankruptcy Using Support Vector Regression Machines," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 13(1), pages 1-3.
    20. Dalla Valle, Luciana & De Giuli, Maria Elena & Tarantola, Claudia & Manelli, Claudio, 2016. "Default probability estimation via pair copula constructions," European Journal of Operational Research, Elsevier, vol. 249(1), pages 298-311.

    More about this item

    Keywords

    Debt Markets; Macro-Fiscal Policy; Public Sector Economics; Economic Adjustment and Lending; External Debt; Strategic Debt Management; Public Finance Decentralization and Poverty Reduction;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:7538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.