IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v59y2006i3p287-295.html
   My bibliography  Save this article

The economic impact of global climate change on Mediterranean rangeland ecosystems: A Space-for-Time approach

Author

Listed:
  • Fleischer, Aliza
  • Sternberg, Marcelo

Abstract

Global Climate Change (GCC) can bring about changes in ecosystems and consequently in their services value. Here we show that the urban population in Israel values the green landscape of rangelands in the mesic Mediterranean climate region and is willing to pay for preserving it in light of the expected increasing aridity conditions in this region. Their valuation of the landscape is higher than that of the grazing services these rangelands provide for livestock growers. These results stem form a Time-for-Space approach with which we were able to measure changes in biomass production and rainfall at four experimental sites along an aridity gradient.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Fleischer, Aliza & Sternberg, Marcelo, 2006. "The economic impact of global climate change on Mediterranean rangeland ecosystems: A Space-for-Time approach," Ecological Economics, Elsevier, vol. 59(3), pages 287-295, September.
  • Handle: RePEc:eee:ecolec:v:59:y:2006:i:3:p:287-295
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(05)00503-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Turpie, Jane K., 2003. "The existence value of biodiversity in South Africa: how interest, experience, knowledge, income and perceived level of threat influence local willingness to pay," Ecological Economics, Elsevier, vol. 46(2), pages 199-216, September.
    2. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    3. Schlenker, Wolfram & Hanemann, W. Michael & Fisher, Anthony C., 2004. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt65s781bh, Department of Agricultural & Resource Economics, UC Berkeley.
    4. Beach, Robert H. & Thomson, Allison M. & McCarl, Bruce A., 2010. "Climate Change Impacts On Us Agriculture," 2010: Climate Change in World Agriculture: Mitigation, Adaptation, Trade and Food Security, June 2010, Stuttgart-Hohenheim, Germany 91393, International Agricultural Trade Research Consortium.
    5. Paulo A.L.D. Nunes, 2002. "The Contingent Valuation of Natural Parks," Books, Edward Elgar Publishing, number 2685.
    6. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    7. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, September.
    8. Joseph A. Herriges & Catherine L. Kling (ed.), 1999. "Valuing Recreation and the Environment," Books, Edward Elgar Publishing, number 1315.
    9. Paulo A.L.D. Nunes & Jeroen C.J.M. van den Bergh, 2003. "The Ecological Economics of Biodiversity," Books, Edward Elgar Publishing, number 2993.
    10. Richard M. Adams, 1989. "Global Climate Change and Agriculture: An Economic Perspective," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(5), pages 1272-1279.
    11. Kenneth E. Train, 1998. "Recreation Demand Models with Taste Differences over People," Land Economics, University of Wisconsin Press, vol. 74(2), pages 230-239.
    12. David F. Layton & Gardner Brown, 2000. "Heterogeneous Preferences Regarding Global Climate Change," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 616-624, November.
    13. Heng Z. Chen & Stephen R. Cosslett, 1998. "Environmental Quality Preference and Benefit Estimation in Multinomial Probit Models: A Simulation Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(3), pages 512-520.
    14. Ian J. Bateman & Richard T. Carson & Brett Day & Michael Hanemann & Nick Hanley & Tannis Hett & Michael Jones-Lee & Graham Loomes, 2002. "Economic Valuation with Stated Preference Techniques," Books, Edward Elgar Publishing, number 2639.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salvati, Luca & Carlucci, Margherita, 2015. "Towards sustainability in agro-forest systems? Grazing intensity, soil degradation and the socioeconomic profile of rural communities in Italy," Ecological Economics, Elsevier, vol. 112(C), pages 1-13.
    2. Lehrer, David & Becker, Nir & Bar, Pua, 2010. "The economic impact of the invasion of Acacia saligna in Israel," MPRA Paper 33954, University Library of Munich, Germany.
    3. Jing Ning & Jianjun Jin & Foyuan Kuang & Xinyu Wan & Chenyang Zhang & Tong Guan, 2019. "The Valuation of Grassland Ecosystem Services in Inner Mongolia of China and Its Spatial Differences," Sustainability, MDPI, vol. 11(24), pages 1-14, December.
    4. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    5. Tietjen, Britta, 2016. "Same rainfall amount different vegetation—How environmental conditions and their interactions influence savanna dynamics," Ecological Modelling, Elsevier, vol. 326(C), pages 13-22.
    6. Kota Mameno & Takahiro Kubo & Hiroyuki Oguma & Yukihiro Amagai & Yasushi Shoji, 2022. "Decline in the alpine landscape aesthetic value in a national park under climate change," Climatic Change, Springer, vol. 170(3), pages 1-18, February.
    7. Vassilis Markantonis & Kostas Bithas, 2010. "The application of the contingent valuation method in estimating the climate change mitigation and adaptation policies in Greece. An expert-based approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 12(5), pages 807-824, October.
    8. Komarek, Timothy M. & Lupi, Frank & Kaplowitz, Michael D., 2011. "Valuing energy policy attributes for environmental management: Choice experiment evidence from a research institution," Energy Policy, Elsevier, vol. 39(9), pages 5105-5115, September.
    9. Divinsky, Itai & Becker, Nir & Bar (Kutiel), Pua, 2017. "Ecosystem service tradeoff between grazing intensity and other services - A case study in Karei-Deshe experimental cattle range in northern Israel," Ecosystem Services, Elsevier, vol. 24(C), pages 16-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fleischer, Aliza & Lichtman, Ivgenia & Mendelsohn, Robert, 2008. "Climate change, irrigation, and Israeli agriculture: Will warming be harmful?," Ecological Economics, Elsevier, vol. 65(3), pages 508-515, April.
    2. Schlenker, Wolfram & Hanemann, W. Michael & Fisher, Anthony C., 2004. "Determinants of Agricultural Output: Degree Days, Yields and Implications for Climate Change," 2005 Annual meeting, July 24-27, Providence, RI 19222, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Baylis, Kathy & Paulson, Nicholas D. & Piras, Gianfranco, 2011. "Spatial Approaches to Panel Data in Agricultural Economics: A Climate Change Application," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(3), pages 325-338, August.
    4. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics and Public Policy Working Papers 2015-20, University of Adelaide, School of Economics and Public Policy.
    5. De Valck, Jeremy & Vlaeminck, Pieter & Liekens, Inge & Aertsens, Joris & Chen, Wendy & Vranken, Liesbet, 2012. "The sources of preference heterogeneity for nature restoration scenarios," Working Papers 146522, Katholieke Universiteit Leuven, Centre for Agricultural and Food Economics.
    6. Robert G. Chambers & Simone Pieralli, 2020. "The Sources of Measured US Agricultural Productivity Growth: Weather, Technological Change, and Adaptation," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1198-1226, August.
    7. Garcia, Maria & Viladrich-Grau, Montserrat, 2009. "The economic relevance of climate variables in agriculture: The case of Spain," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 9(02), pages 1-32.
    8. Dale T. Manning & Christopher Goemans & Alexander Maas, 2017. "Producer Responses to Surface Water Availability and Implications for Climate Change Adaptation," Land Economics, University of Wisconsin Press, vol. 93(4), pages 631-653.
    9. Van Butsic & Ellen Hanak & Robert G. Valletta, 2008. "Climate change and asset prices: hedonic estimates for North American ski resorts," Working Paper Series 2008-12, Federal Reserve Bank of San Francisco.
    10. Alpizar, Francisco & Carlsson, Fredrik & Naranjo, Maria, 2009. "The effect of risk, ambiguity, and coordination on farmers’ adaptation to climate change: A framed field experiment," Working Papers in Economics 382, University of Gothenburg, Department of Economics.
    11. Deschenes, Olivier & Greenstone, Michael, 2004. "The Economic Impacts of Climate Change: Evidence from Agricultural Profits and Random Fluctuations in Weather," University of California at Santa Barbara, Economics Working Paper Series qt6w7242cj, Department of Economics, UC Santa Barbara.
    12. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    13. Bernal-Escobar, Adriana & Cuervo-Sánchez, Rafael & Pinzon-Trujillo, Gonzalo & Maldonado, Jorge Higinio, 2013. "Glacier Melting and Retreat: Understanding the Perception of Agricultural Households That Face the Challenges of Climate Change," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149005, Agricultural and Applied Economics Association.
    14. Jonathan Kaminski & Iddo Kan & Aliza Fleischer, 2013. "A Structural Land-Use Analysis of Agricultural Adaptation to Climate Change: A Proactive Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(1), pages 70-93.
    15. S. Niggol Seo, 2010. "Managing forests, livestock, and crops under global warming: a micro-econometric analysis of land use changes in Africa ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(2), pages 239-258, April.
    16. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    17. Auffhammer, Maximilian & Schlenker, Wolfram, 2014. "Empirical studies on agricultural impacts and adaptation," Energy Economics, Elsevier, vol. 46(C), pages 555-561.
    18. Fleischer, Aliza & Shafir, Sharoni & Mandelik, Yael, 2013. "A proactive approach for assessing alternative management programs for an invasive alien pollinator species," Ecological Economics, Elsevier, vol. 88(C), pages 126-132.
    19. Ariel Ortiz-Bobea, 2021. "Climate, Agriculture and Food," Papers 2105.12044, arXiv.org.
    20. José Gustavo Féres & Eustáquio José Reis & Juliana Speranza, 2008. "Assessing the Impact of Climate Change on the Brazilian Agricultural Sector," Anais do XXXVI Encontro Nacional de Economia [Proceedings of the 36th Brazilian Economics Meeting] 200807181438190, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:59:y:2006:i:3:p:287-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.