IDEAS home Printed from https://ideas.repec.org/p/war/wpaper/2024-09.html
   My bibliography  Save this paper

Statistical arbitrage in multi-pair trading strategy based on graph clustering algorithms in US equities market

Author

Listed:
  • Adam Korniejczuk

    (University of Warsaw, Faculty of Economic Sciences, Quantitative Finance Research Group)

  • Robert Ślepaczuk

    (University of Warsaw, Faculty of Economic Sciences, Quantitative Finance Research Group, Department of Quantitative Finance and Machine Learning)

Abstract

The study seeks to develop an effective strategy based on the novel framework of statistical arbitrage based on graph clustering algorithms. Amalgamation of quantitative and machine learning methods, including the Kelly criterion, and an ensemble of machine learning classifiers have been used to improve risk-adjusted returns and increase the immunity to transaction costs over existing approaches. The study seeks to provide an integrated approach to optimal signal detection and risk management. As a part of this approach, innovative ways of optimizing take profit and stop loss functions for daily frequency trading strategies have been proposed and tested. All of the tested approaches outperformed appropriate benchmarks. The best combinations of the techniques and parameters demonstrated significantly better performance metrics than the relevant benchmarks. The results have been obtained under the assumption of realistic transaction costs, but are sensitive to the changes of some key parameters.

Suggested Citation

  • Adam Korniejczuk & Robert Ślepaczuk, 2024. "Statistical arbitrage in multi-pair trading strategy based on graph clustering algorithms in US equities market," Working Papers 2024-09, Faculty of Economic Sciences, University of Warsaw.
  • Handle: RePEc:war:wpaper:2024-09
    as

    Download full text from publisher

    File URL: https://www.wne.uw.edu.pl/download_file/4275/0
    File Function: First version, 2024
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Huafeng (Jason) Chen & Shaojun (Jenny) Chen & Zhuo Chen & Feng Li, 2019. "Empirical Investigation of an Equity Pairs Trading Strategy," Management Science, INFORMS, vol. 65(1), pages 370-389, January.
    2. Hannah Cheng Juan Zhan & William Rea & Alethea Rea, 2014. "An Application of Correlation Clustering to Portfolio Diversification," Working Papers in Economics 14/11, University of Canterbury, Department of Economics and Finance.
    3. Johannes St binger & Jens Bredthauer, 2017. "Statistical Arbitrage Pairs Trading with High-frequency Data," International Journal of Economics and Financial Issues, Econjournals, vol. 7(4), pages 650-662.
    4. John Anderson & Robert Faff, 2004. "Maximizing futures returns using fixed fraction asset allocation," Applied Financial Economics, Taylor & Francis Journals, vol. 14(15), pages 1067-1073.
    5. Svetlana Borovkova & Ioannis Tsiamas, 2019. "An ensemble of LSTM neural networks for high‐frequency stock market classification," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(6), pages 600-619, September.
    6. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    7. Yangru Wu & Hua Zhang, 1997. "Forward premiums as unbiased predictors of future currency depreciation: a non-parametric analysis," Journal of International Money and Finance, Elsevier, vol. 16(4), pages 609-623, August.
    8. Fama, Eugene F. & French, Kenneth R., 1997. "Industry costs of equity," Journal of Financial Economics, Elsevier, vol. 43(2), pages 153-193, February.
    9. Statman, Meir, 1987. "How Many Stocks Make a Diversified Portfolio?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(3), pages 353-363, September.
    10. Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
    11. Dixon, Matthew & Klabjan, Diego & Bang, Jin Hoon, 2017. "Classification-based financial markets prediction using deep neural networks," Algorithmic Finance, IOS Press, vol. 6(3-4), pages 67-77.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Binh Do & Robert Faff, 2021. "Pairs trading and idiosyncratic cash flow risk," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(2), pages 3171-3206, June.
    2. Poutré, Cédric & Dionne, Georges & Yergeau, Gabriel, 2023. "International high-frequency arbitrage for cross-listed stocks," International Review of Financial Analysis, Elsevier, vol. 89(C).
    3. Endres, Sylvia & Stübinger, Johannes, 2018. "A flexible regime switching model with pairs trading application to the S&P 500 high-frequency stock returns," FAU Discussion Papers in Economics 07/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    4. Jeffrey Wurgler & Ekaterina Zhuravskaya, 2002. "Does Arbitrage Flatten Demand Curves for Stocks?," The Journal of Business, University of Chicago Press, vol. 75(4), pages 583-608, October.
    5. Joseph Chen & Samuel Hanson & Harrison Hong & Jeremy C. Stein, 2008. "Do Hedge Funds Profit From Mutual-Fund Distress?," NBER Working Papers 13786, National Bureau of Economic Research, Inc.
    6. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    7. Ana Isabel Ramos Domingues & António de Melo da Costa Cerqueira & Elísio Fernando Moreira Brandão, 2016. "Idiosyncratic Volatility and Earnings Quality: Evidence from United Kingdom," FEP Working Papers 579, Universidade do Porto, Faculdade de Economia do Porto.
    8. Stübinger, Johannes, 2018. "Statistical arbitrage with optimal causal paths on high-frequencydata of the S&P 500," FAU Discussion Papers in Economics 01/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    9. Trinks, Arjan & Scholtens, Bert & Mulder, Machiel & Dam, Lammertjan, 2017. "Divesting Fossil Fuels," Research Report 17001-EEF, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    10. Fernando Caneo & Werner Kristjanpoller, 2021. "Improving statistical arbitrage investment strategy: Evidence from Latin American stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4424-4440, July.
    11. Schnaubelt, Matthias & Fischer, Thomas G. & Krauss, Christopher, 2020. "Separating the signal from the noise – Financial machine learning for Twitter," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    12. Johannes Stübinger & Sylvia Endres, 2018. "Pairs trading with a mean-reverting jump–diffusion model on high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1735-1751, October.
    13. Endres, Sylvia & Stübinger, Johannes, 2017. "Optimal trading strategies for Lévy-driven Ornstein-Uhlenbeck processes," FAU Discussion Papers in Economics 17/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    14. Hillert, Alexander & Jacobs, Heiko & Müller, Sebastian, 2018. "Journalist disagreement," Journal of Financial Markets, Elsevier, vol. 41(C), pages 57-76.
    15. Thomas Günter Fischer & Christopher Krauss & Alexander Deinert, 2019. "Statistical Arbitrage in Cryptocurrency Markets," JRFM, MDPI, vol. 12(1), pages 1-15, February.
    16. Patrick Bielstein, 2018. "International asset allocation using the market implied cost of capital," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 32(1), pages 17-51, February.
    17. Hannes Mohrschladt, 2018. "The impact of size and book-to-market among paired stocks," Journal of Asset Management, Palgrave Macmillan, vol. 19(6), pages 384-393, October.
    18. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    19. Chen, Zilin & Guo, Li & Tu, Jun, 2021. "Media connection and return comovement," Journal of Economic Dynamics and Control, Elsevier, vol. 130(C).
    20. Chenyanzi Yu & Tianyang Xie, 2021. "Multivariate Pair Trading by Volatility & Model Adaption Trade-off," Papers 2106.09132, arXiv.org.

    More about this item

    Keywords

    graph clustering algorithms; statistical arbitrage; algorithmic investment strategies; pair trading strategy; Kelly criterion; machine learning; risk adjusted returns;
    All these keywords.

    JEL classification:

    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:war:wpaper:2024-09. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marcin Bąba (email available below). General contact details of provider: https://edirc.repec.org/data/fesuwpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.