IDEAS home Printed from https://ideas.repec.org/p/war/wpaper/2020-31.html
   My bibliography  Save this paper

Variance Gamma Model in Hedging Vanilla and Exotic Options

Author

Listed:
  • Bartłomiej Bollin

    (Quantitative Finance Research Group; Faculty of Economic Sciences, University of Warsaw)

  • Robert Ślepaczuk

    (Quantitative Finance Research Group; Faculty of Economic Sciences, University of Warsaw)

Abstract

The aim of this research is to explore the performance of different option pricing models in hedging the exotic options using the FX data. We analyze the narrow class of Lévy processes - the Variance Gamma process in hedging vanilla, Asian and lookback options. We pose a question of whether or not using additional level of complexity, by introducing more sophisticated models, improves the effectiveness of hedging options, assuming that hedging errors are measured as the differences between portfolio values according to the model and not real market data (which we don’t have). We compare this model with its special case and the Black-Scholes model. We use the data for EURUSD currency pair assuming that option prices change according to the model (as we don’t observe them directly). We use Monte Carlo methods in fitting the model’s parameters. Our results are not in line with the previous literature as there are no signs of the Variance Gamma process being better than the Black-Scholes and it seems that all three models perform equally well.

Suggested Citation

  • Bartłomiej Bollin & Robert Ślepaczuk, 2020. "Variance Gamma Model in Hedging Vanilla and Exotic Options," Working Papers 2020-31, Faculty of Economic Sciences, University of Warsaw.
  • Handle: RePEc:war:wpaper:2020-31
    as

    Download full text from publisher

    File URL: https://www.wne.uw.edu.pl/index.php/download_file/5835/
    File Function: First version, 2020
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, In Joon & Kim, Sol, 2004. "Empirical comparison of alternative stochastic volatility option pricing models: Evidence from Korean KOSPI 200 index options market," Pacific-Basin Finance Journal, Elsevier, vol. 12(2), pages 117-142, April.
    2. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    3. Lam, K. & Chang, E. & Lee, M. C., 2002. "An empirical test of the variance gamma option pricing model," Pacific-Basin Finance Journal, Elsevier, vol. 10(3), pages 267-285, June.
    4. Richard Finlay & Eugene Seneta, 2008. "Stationary‐Increment Variance‐Gamma and t Models: Simulation and Parameter Estimation," International Statistical Review, International Statistical Institute, vol. 76(2), pages 167-186, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marwa Belhaj Salem & Mitra Fouladirad & Estelle Deloux, 2021. "Prognostic and Classification of Dynamic Degradation in a Mechanical System Using Variance Gamma Process," Mathematics, MDPI, vol. 9(3), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    2. Mozumder, Sharif & Frijns, Bart & Talukdar, Bakhtear & Kabir, M. Humayun, 2024. "On practitioners closed-form GARCH option pricing," International Review of Financial Analysis, Elsevier, vol. 94(C).
    3. Olesia Verchenko, 2011. "Testing option pricing models: complete and incomplete markets," Discussion Papers 38, Kyiv School of Economics.
    4. Harish S. Bhat & Nitesh Kumar, 2015. "Large-Scale Empirical Tests of the Markov Tree Model," IJFS, MDPI, vol. 3(3), pages 1-39, July.
    5. Yi-Hsien Wang, 2009. "Using neural network to forecast stock index option price: a new hybrid GARCH approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 43(5), pages 833-843, September.
    6. Kim, Namhyoung & Lee, Jaewook, 2013. "No-arbitrage implied volatility functions: Empirical evidence from KOSPI 200 index options," Journal of Empirical Finance, Elsevier, vol. 21(C), pages 36-53.
    7. Kim, In Joon & Kim, Sol, 2004. "Empirical comparison of alternative stochastic volatility option pricing models: Evidence from Korean KOSPI 200 index options market," Pacific-Basin Finance Journal, Elsevier, vol. 12(2), pages 117-142, April.
    8. Alok Dixit & Shivam Singh, 2018. "Ad-Hoc Black–Scholes vis-à-vis TSRV-based Black–Scholes: Evidence from Indian Options Market," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(1), pages 57-88, March.
    9. Sol Kim & In Jung Song, 2021. "The traders' rule and long‐term options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(3), pages 406-436, March.
    10. Sol Kim, 2021. "Portfolio of Volatility Smiles versus Volatility Surface: Implications for pricing and hedging options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1154-1176, July.
    11. In Kim & In-Seok Baek & Jaesun Noh & Sol Kim, 2007. "The role of stochastic volatility and return jumps: reproducing volatility and higher moments in the KOSPI 200 returns dynamics," Review of Quantitative Finance and Accounting, Springer, vol. 29(1), pages 69-110, July.
    12. Carol Alexander & Andreas Kaeck, 2012. "Does model fit matter for hedging? Evidence from FTSE 100 options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(7), pages 609-638, July.
    13. Han, Chuan-Hsiang & Chang, Chien-Hung & Kuo, Chii-Shyan & Yu, Shih-Ti, 2015. "Robust hedging performance and volatility risk in option markets: Application to Standard and Poor's 500 and Taiwan index options," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 160-173.
    14. Carol Alexander & Alexander Rubinov & Markus Kalepky & Stamatis Leontsinis, 2012. "Regime‐dependent smile‐adjusted delta hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(3), pages 203-229, March.
    15. Hong Mao & Zhongkai Wen, 2019. "Pricing options of security portfolio in cyclical economic environment," Journal of Asset Management, Palgrave Macmillan, vol. 20(5), pages 384-394, September.
    16. Kim, Jungmu & Park, Yuen Jung & Ryu, Doojin, 2018. "Testing CEV stochastic volatility models using implied volatility index data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 224-232.
    17. Milan Kumar Das & Anindya Goswami, 2019. "Testing of binary regime switching models using squeeze duration analysis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-20, March.
    18. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    19. Marcos Escobar-Anel & Weili Fan, 2023. "The SEV-SV Model—Applications in Portfolio Optimization," Risks, MDPI, vol. 11(2), pages 1-34, January.
    20. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.

    More about this item

    Keywords

    Monte Carlo; option pricing; Variance Gamma; BSM model; Lévy processes; FX market; hedging; Asian and lookback options;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:war:wpaper:2020-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marcin Bąba (email available below). General contact details of provider: https://edirc.repec.org/data/fesuwpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.