IDEAS home Printed from https://ideas.repec.org/a/spr/jqecon/v16y2018i1d10.1007_s40953-017-0078-3.html
   My bibliography  Save this article

Ad-Hoc Black–Scholes vis-à-vis TSRV-based Black–Scholes: Evidence from Indian Options Market

Author

Listed:
  • Alok Dixit

    (Indian Institute of Management)

  • Shivam Singh

    (Indian Institute of Management)

Abstract

This research paper examines one-day-ahead out-of-sample performance of the volatility smirk-based options pricing models, namely, Ad-Hoc-Black–Scholes (AHBS) models on the CNX Nifty index options of India. Further, we compare the performance of these models with that of a TSRV-based Black–Scholes (BS) model. For the purpose, the study uses tick-by-tick data. The results on the AHBS models are highly satisfactory and robust across all the subgroups considered in the study. Notably, a daily constant implied volatility based ad-hoc approach outperforms the TSRV-based BS model substantially. The performance of the ad-hoc approaches improves further when the smile/smirk effect is considered. For the estimation of the implied volatility smile, we apply three weighting schemes based on the Vega and liquidity of the options. All the schemes offer equally competing results. The major contribution of the study to the existing literature on options pricing is in terms of the ex-ante examination of the ad-hoc approaches to price the options by calibrating volatility smile/smirk on a daily basis.

Suggested Citation

  • Alok Dixit & Shivam Singh, 2018. "Ad-Hoc Black–Scholes vis-à-vis TSRV-based Black–Scholes: Evidence from Indian Options Market," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(1), pages 57-88, March.
  • Handle: RePEc:spr:jqecon:v:16:y:2018:i:1:d:10.1007_s40953-017-0078-3
    DOI: 10.1007/s40953-017-0078-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40953-017-0078-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40953-017-0078-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scholes, Myron & Williams, Joseph, 1977. "Estimating betas from nonsynchronous data," Journal of Financial Economics, Elsevier, vol. 5(3), pages 309-327, December.
    2. Sol Kim, 2009. "The performance of traders' rules in options market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(11), pages 999-1020, November.
    3. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    4. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2005. "Correcting the Errors: Volatility Forecast Evaluation Using High-Frequency Data and Realized Volatilities," Econometrica, Econometric Society, vol. 73(1), pages 279-296, January.
    5. Whaley, Robert E., 1982. "Valuation of American call options on dividend-paying stocks : Empirical tests," Journal of Financial Economics, Elsevier, vol. 10(1), pages 29-58, March.
    6. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    7. Kim, In Joon & Kim, Sol, 2004. "Empirical comparison of alternative stochastic volatility option pricing models: Evidence from Korean KOSPI 200 index options market," Pacific-Basin Finance Journal, Elsevier, vol. 12(2), pages 117-142, April.
    8. repec:eme:mfppss:v:41:y:2015:i:8:p:857-870 is not listed on IDEAS
    9. Yan, Shu, 2011. "Jump risk, stock returns, and slope of implied volatility smile," Journal of Financial Economics, Elsevier, vol. 99(1), pages 216-233, January.
    10. repec:bla:jfinan:v:59:y:2004:i:3:p:1405-1440 is not listed on IDEAS
    11. A. Vinay Kumar & Shikha Jaiswal, 2013. "The Information Content of Alternate Implied Volatility Models: Case of Indian Markets," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 12(3), pages 293-321, December.
    12. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    13. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    14. Ball, Clifford A & Torous, Walter N, 1985. "On Jumps in Common Stock Prices and Their Impact on Call Option Pricing," Journal of Finance, American Finance Association, vol. 40(1), pages 155-173, March.
    15. Rohini Grover & Susan Thomas, 2012. "Liquidity Considerations in Estimating Implied Volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(8), pages 714-741, August.
    16. Don M. Chance, 1988. "Boundary Condition Tests Of Bid And Ask Prices Of Index Call Options," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 11(1), pages 21-31, March.
    17. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    18. Latane, Henry A & Rendleman, Richard J, Jr, 1976. "Standard Deviations of Stock Price Ratios Implied in Option Prices," Journal of Finance, American Finance Association, vol. 31(2), pages 369-381, May.
    19. Vipul, 2005. "Futures and options expiration‐day effects: The Indian evidence," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(11), pages 1045-1065, November.
    20. Vipul, 2008. "Cross‐market efficiency in the Indian derivatives market: A test of put–call parity," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(9), pages 889-910, September.
    21. Caio Ibsen Rodrigues de Almeida & Samy Dana, 2005. "Stochastic Volatility and Option Pricing in the Brazilian Stock Marke," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 4(2), pages 169-206, August.
    22. repec:bla:jfinan:v:53:y:1998:i:6:p:2059-2106 is not listed on IDEAS
    23. Beckers, Stan, 1981. "Standard deviations implied in option prices as predictors of future stock price variability," Journal of Banking & Finance, Elsevier, vol. 5(3), pages 363-381, September.
    24. Vipul & Joshy Jacob, 2007. "Forecasting performance of extreme‐value volatility estimators," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(11), pages 1085-1105, November.
    25. MacBeth, James D & Merville, Larry J, 1979. "An Empirical Examination of the Black-Scholes Call Option Pricing Model," Journal of Finance, American Finance Association, vol. 34(5), pages 1173-1186, December.
    26. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    27. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    3. Hsuan-Chu Lin & Ren-Raw Chen & Oded Palmon, 2016. "Explaining the volatility smile: non-parametric versus parametric option models," Review of Quantitative Finance and Accounting, Springer, vol. 46(4), pages 907-935, May.
    4. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    5. Ramazan Gencay & Aslihan Salih, 2003. "Degree of Mispricing with the Black-Scholes Model and Nonparametric Cures," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 73-101, May.
    6. K. Ronnie Sircar & George Papanicolaou, 1999. "Stochastic volatility, smile & asymptotics," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(2), pages 107-145.
    7. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    8. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    9. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    10. Siddiqi, Hammad, 2013. "Analogy Making, Option Prices, and Implied Volatility," MPRA Paper 48862, University Library of Munich, Germany.
    11. Bakshi, Gurdip S. & Zhiwu, Chen, 1997. "An alternative valuation model for contingent claims," Journal of Financial Economics, Elsevier, vol. 44(1), pages 123-165, April.
    12. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    13. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    14. Eric Jacquier & Robert Jarrow, "undated". "Model Error in Contingent Claim Models (Dynamic Evaluation)," Rodney L. White Center for Financial Research Working Papers 07-96, Wharton School Rodney L. White Center for Financial Research.
    15. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," OFRC Working Papers Series 2005fe08, Oxford Financial Research Centre.
    16. Benzoni, Luca & Collin-Dufresne, Pierre & Goldstein, Robert S., 2011. "Explaining asset pricing puzzles associated with the 1987 market crash," Journal of Financial Economics, Elsevier, vol. 101(3), pages 552-573, September.
    17. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    18. Guo, Weiyu, 2004. "Some evidence in the trading and pricing of equity LEAPS," International Review of Economics & Finance, Elsevier, vol. 13(4), pages 407-426.
    19. David Edelman & Thomas Gillespie, 2000. "The Stochastically Subordinated Poisson Normal Process for Modelling Financial Assets," Annals of Operations Research, Springer, vol. 100(1), pages 133-164, December.
    20. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.

    More about this item

    Keywords

    Black–Scholes; Ad-Hoc Black-Scholes; Implied volatility; Volatility smile; Two scale realized volatility; Tick-by-tick data; Indian options market;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jqecon:v:16:y:2018:i:1:d:10.1007_s40953-017-0078-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.