IDEAS home Printed from https://ideas.repec.org/p/vuw/vuwecf/20148.html
   My bibliography  Save this paper

Forecasting the Term Structure of Implied Volatilities

Author

Listed:
  • Guo, Biao
  • Han, Qian
  • Lin, Hai

Abstract

Neumann and Skiadopoulos (2013) document that although the implied volatilities are predictable, their economic pro ts become insignificant once the cost is accounted for. We show that the trading strategies based on the predictability of implied volatilities could generate significant risk-adjusted returns after controlling for the transaction cost. The implied volatility curve information is useful for the out-of-sample forecast of implied volatilities up to one week. Short-maturity implied volatilities tend to be more predictable than long-maturity implied volatilities. Although the long-maturity options are much less traded than the short-maturity options, their implied volatilities provide much more information on the price discovery.

Suggested Citation

  • Guo, Biao & Han, Qian & Lin, Hai, 2015. "Forecasting the Term Structure of Implied Volatilities," Working Paper Series 20148, Victoria University of Wellington, School of Economics and Finance.
  • Handle: RePEc:vuw:vuwecf:20148
    as

    Download full text from publisher

    File URL: https://ir.wgtn.ac.nz/handle/123456789/20148
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    2. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2010. "Predictable dynamics in implied volatility surfaces from OTC currency options," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1175-1188, June.
    3. Konstantinidi, Eirini & Skiadopoulos, George & Tzagkaraki, Emilia, 2008. "Can the evolution of implied volatility be forecasted? Evidence from European and US implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2401-2411, November.
    4. repec:bla:jfinan:v:59:y:2004:i:3:p:1235-1258 is not listed on IDEAS
    5. Sílvia Gonçalves & Massimo Guidolin, 2006. "Predictable Dynamics in the S&P 500 Index Options Implied Volatility Surface," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1591-1636, May.
    6. Roger K. Loh & René M. Stulz, 2018. "Is Sell‐Side Research More Valuable in Bad Times?," Journal of Finance, American Finance Association, vol. 73(3), pages 959-1013, June.
    7. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-386.
    8. Edith S. Hotchkiss & Tavy Ronen, 2002. "The Informational Efficiency of the Corporate Bond Market: An Intraday Analysis," The Review of Financial Studies, Society for Financial Studies, vol. 15(5), pages 1325-1354.
    9. Hogan, Steve & Jarrow, Robert & Teo, Melvyn & Warachka, Mitch, 2004. "Testing market efficiency using statistical arbitrage with applications to momentum and value strategies," Journal of Financial Economics, Elsevier, vol. 73(3), pages 525-565, September.
    10. Haoxiang Zhu, 2014. "Do Dark Pools Harm Price Discovery?," The Review of Financial Studies, Society for Financial Studies, vol. 27(3), pages 747-789.
    11. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2011. "How important is the term structure in implied volatility surface modeling? Evidence from foreign exchange options," Journal of International Money and Finance, Elsevier, vol. 30(4), pages 623-640, June.
    12. Phillips, Susan M. & Smith, Clifford Jr., 1980. "Trading costs for listed options : The implications for market efficiency," Journal of Financial Economics, Elsevier, vol. 8(2), pages 179-201, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Biao & Han, Qian & Lin, Hai, 2015. "Forecasting the Term Structure of Implied Volatilities," Working Paper Series 6189, Victoria University of Wellington, School of Economics and Finance.
    2. Biao Guo & Qian Han & Hai Lin, 2018. "Are there gains from using information over the surface of implied volatilities?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(6), pages 645-672, June.
    3. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    4. Bernales, Alejandro & Guidolin, Massimo, 2015. "Learning to smile: Can rational learning explain predictable dynamics in the implied volatility surface?," Journal of Financial Markets, Elsevier, vol. 26(C), pages 1-37.
    5. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.
    6. Shang, Han Lin & Kearney, Fearghal, 2022. "Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1025-1049.
    7. Chalamandaris, Georgios & Rompolis, Leonidas S., 2012. "Exploring the role of the realized return distribution in the formation of the implied volatility smile," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1028-1044.
    8. Chen, Ying & Han, Qian & Niu, Linlin, 2018. "Forecasting the term structure of option implied volatility: The power of an adaptive method," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 157-177.
    9. Guidolin, Massimo & Wang, Kai, 2023. "The empirical performance of option implied volatility surface-driven optimal portfolios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    10. Konstantinidi, Eirini & Skiadopoulos, George, 2016. "How does the market variance risk premium vary over time? Evidence from S&P 500 variance swap investment returns," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 62-75.
    11. Michel van der Wel & Sait R. Ozturk & Dick van Dijk, 2015. "Dynamic Factor Models for the Volatility Surface," CREATES Research Papers 2015-13, Department of Economics and Business Economics, Aarhus University.
    12. Dunis, Christian & Kellard, Neil M. & Snaith, Stuart, 2013. "Forecasting EUR–USD implied volatility: The case of intraday data," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4943-4957.
    13. Konstantinidi, Eirini & Skiadopoulos, George, 2016. "How does the market variance risk premium vary over time? Evidence from S&P 500 variance swap investment returns," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 62-75.
    14. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2010. "Predictable dynamics in implied volatility surfaces from OTC currency options," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1175-1188, June.
    15. Sudarshan Kumar & Sobhesh Kumar Agarwalla & Jayanth R. Varma & Vineet Virmani, 2023. "Harvesting the volatility smile in a large emerging market: A Dynamic Nelson–Siegel approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1615-1644, November.
    16. Ornelas, José Renato Haas & Mauad, Roberto Baltieri, 2019. "Implied volatility term structure and exchange rate predictability," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1800-1813.
    17. Bollerslev, Tim & Todorov, Viktor & Xu, Lai, 2015. "Tail risk premia and return predictability," Journal of Financial Economics, Elsevier, vol. 118(1), pages 113-134.
    18. Markopoulou, Chryssa & Skintzi, Vasiliki & Refenes, Apostolos, 2016. "On the predictability of model-free implied correlation," International Journal of Forecasting, Elsevier, vol. 32(2), pages 527-547.
    19. Le, Van & Zurbruegg, Ralf, 2014. "Forecasting option smile dynamics," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 32-45.
    20. Shengli Chen & Zili Zhang, 2019. "Forecasting Implied Volatility Smile Surface via Deep Learning and Attention Mechanism," Papers 1912.11059, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vuw:vuwecf:20148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Library Technology Services (email available below). General contact details of provider: https://edirc.repec.org/data/egvuwnz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.