IDEAS home Printed from https://ideas.repec.org/p/ver/wpaper/12-2014.html
   My bibliography  Save this paper

Improving GMM efficiency in dynamic models for panel data with mean stationarity

Author

Listed:
  • Giorgio Calzolari

    (University of Florence)

  • Laura Magazzini

    (Department of Economics (University of Verona))

Abstract

Within the framework of dynamic panel data models with mean stationarity, one additional moment condition may remarkably increase the efficiency of the system GMM estimator. This additional condition is essentially a condition of “homoskesdasticity” of the individual effects; it is “implicitly satisfied” in all the Monte Carlo simulations on dynamic panel data models available in the literature (including the experiments with heteroskedasticity, which is always confined to the idiosyncratic errors), but not “explicitly” exploited. Monte Carlo experiments show remarkable efficiency improvements when the distribution of individual effects, and thus of yi0, are skewed, thus including the very important cases in economic applications that include variables like individual wages, sizes of the firms, number of employees, etc.

Suggested Citation

  • Giorgio Calzolari & Laura Magazzini, 2014. "Improving GMM efficiency in dynamic models for panel data with mean stationarity," Working Papers 12/2014, University of Verona, Department of Economics.
  • Handle: RePEc:ver:wpaper:12/2014
    as

    Download full text from publisher

    File URL: http://dse.univr.it/home/workingpapers/wp2014n12.pdf
    File Function: First version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alok Bhargava & J. D. Sargan, 2006. "Estimating Dynamic Random Effects Models From Panel Data Covering Short Time Periods," World Scientific Book Chapters, in: Econometrics, Statistics And Computational Approaches In Food And Health Sciences, chapter 1, pages 3-27, World Scientific Publishing Co. Pte. Ltd..
    2. Giorgio Calzolari & Laura Magazzini, 2013. "A powerful test of mean stationarity in dynamic models for panel data: Monte Carlo evidence," Working Papers 14/2013, University of Verona, Department of Economics.
    3. Han, Chirok & Phillips, Peter C. B., 2010. "Gmm Estimation For Dynamic Panels With Fixed Effects And Strong Instruments At Unity," Econometric Theory, Cambridge University Press, vol. 26(1), pages 119-151, February.
    4. David Roodman, 2009. "A Note on the Theme of Too Many Instruments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(1), pages 135-158, February.
    5. Kiviet, Jan F., 1995. "On bias, inconsistency, and efficiency of various estimators in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 68(1), pages 53-78, July.
    6. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    7. Frank Windmeijer, 2000. "A finite sample correction for the variance of linear two-step GMM estimators," IFS Working Papers W00/19, Institute for Fiscal Studies.
    8. Hayakawa, Kazuhiko, 2007. "Small sample bias properties of the system GMM estimator in dynamic panel data models," Economics Letters, Elsevier, vol. 95(1), pages 32-38, April.
    9. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    10. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    11. Hsiao, Cheng & Hashem Pesaran, M. & Kamil Tahmiscioglu, A., 2002. "Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods," Journal of Econometrics, Elsevier, vol. 109(1), pages 107-150, July.
    12. Hahn, Jinyong, 1999. "How informative is the initial condition in the dynamic panel model with fixed effects?," Journal of Econometrics, Elsevier, vol. 93(2), pages 309-326, December.
    13. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    14. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Efe Can KILINÇ & Cafer Necat BERBEROĞLU, 2019. "The Relationship Between Saving, Profit Rates and Business CyclesAbstract:There are different approaches of economics schools on the sources, causes and determinants of business cycles. These approach," Sosyoekonomi Journal, Sosyoekonomi Society.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgio Calzolari & Laura Magazzini, 2011. "Moment Conditions and Neglected Endogeneity in Panel Data Models," Working Papers 02/2011, University of Verona, Department of Economics.
    2. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    3. Hayakawa, Kazuhiko & Pesaran, M. Hashem, 2015. "Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 188(1), pages 111-134.
    4. Giorgio Calzolari & Laura Magazzini, 2013. "A powerful test of mean stationarity in dynamic models for panel data: Monte Carlo evidence," Working Papers 14/2013, University of Verona, Department of Economics.
    5. In Choi & Sanghyun Jung, 2021. "Cross-sectional quasi-maximum likelihood and bias-corrected pooled least squares estimators for short dynamic panels," Empirical Economics, Springer, vol. 60(1), pages 177-203, January.
    6. Sebastian Kripfganz & Claudia Schwarz, 2019. "Estimation of linear dynamic panel data models with time‐invariant regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(4), pages 526-546, June.
    7. Kazuhiko Hayakawa & M. Hashem Pesaran, 2012. "Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Data Models," Working Paper series 38_12, Rimini Centre for Economic Analysis.
    8. Youssef, Ahmed & Abonazel, Mohamed R., 2015. "Alternative GMM Estimators for First-order Autoregressive Panel Model: An Improving Efficiency Approach," MPRA Paper 68674, University Library of Munich, Germany.
    9. Hayakawa, K. & Pesaran, M.H., 2012. "Robust Standard Errors in Transformed Likelihood Estimation of Dynamic Panel Models," Cambridge Working Papers in Economics 1224, Faculty of Economics, University of Cambridge.
    10. Alexander Chudik & M. Hashem Pesaran, 2017. "A Bias-Corrected Method of Moments Approach to Estimation of Dynamic Short-T Panels," CESifo Working Paper Series 6688, CESifo.
    11. Kripfganz, Sebastian, 2014. "Unconditional Transformed Likelihood Estimation of Time-Space Dynamic Panel Data Models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100604, Verein für Socialpolitik / German Economic Association.
    12. Jan F. Kiviet, 2005. "Judging Contending Estimators by Simulation: Tournaments in Dynamic Panel Data Models," Tinbergen Institute Discussion Papers 05-112/4, Tinbergen Institute.
    13. Stephen Bond & Anke Hoeffler & Jonathan Temple, 2001. "GMM Estimation of Empirical Growth Models," Economics Papers 2001-W21, Economics Group, Nuffield College, University of Oxford.
    14. Bun, Maurice J.G. & Kleibergen, Frank, 2022. "Identification Robust Inference For Moments-Based Analysis Of Linear Dynamic Panel Data Models," Econometric Theory, Cambridge University Press, vol. 38(4), pages 689-751, August.
    15. Hsiao, Cheng & Hashem Pesaran, M. & Kamil Tahmiscioglu, A., 2002. "Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods," Journal of Econometrics, Elsevier, vol. 109(1), pages 107-150, July.
    16. Khalaf, Lynda & Saunders, Charles J., 2020. "Monte Carlo two-stage indirect inference (2SIF) for autoregressive panels," Journal of Econometrics, Elsevier, vol. 218(2), pages 419-434.
    17. Alexander Chudik & M. Hashem Pesaran, 2017. "An Augmented Anderson-Hsiao Estimator for Dynamic Short-T Panels," Globalization Institute Working Papers 327, Federal Reserve Bank of Dallas, revised 27 Mar 2021.
    18. Binder, Michael & Hsiao, Cheng & Pesaran, M. Hashem, 2005. "Estimation And Inference In Short Panel Vector Autoregressions With Unit Roots And Cointegration," Econometric Theory, Cambridge University Press, vol. 21(4), pages 795-837, August.
    19. Fritsch, Markus, 2019. "On GMM estimation of linear dynamic panel data models," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe B-36-19, University of Passau, Faculty of Business and Economics.
    20. De Blander, Rembert, 2020. "Iterative estimation correcting for error auto-correlation in short panels, applied to lagged dependent variable models," Econometrics and Statistics, Elsevier, vol. 15(C), pages 3-29.

    More about this item

    Keywords

    panel data; dynamic model; GMM estimation; mean stationarity; skewed individual effects;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ver:wpaper:12/2014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael Reiter (email available below). General contact details of provider: https://edirc.repec.org/data/isverit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.