IDEAS home Printed from https://ideas.repec.org/p/ven/wpaper/2011_10.html
   My bibliography  Save this paper

Particle Swarm Optimization with non-smooth penalty reformulation for a complex portfolio selection problem

Author

Listed:
  • Marco Corazza

    (Department of Economics, Ca� Foscari University of Venice; Advanced School of Economics in Venice.)

  • Giovanni Fasano

    (Department of Management, Ca� Foscari University of Venice; CNR - INSEAN (Italian Ship Model Basin).)

  • Riccardo Gusso

    (Department of Economics, Ca� Foscari University of Venice.)

Abstract

In the classical model for portfolio selection the risk is measured by the variance of returns. It is well known that, if returns are not elliptically distributed, this may cause inaccurate investment decisions. To address this issue, several alternative measures of risk have been proposed. In this contribution we focus on a class of measures that uses information contained both in lower and in upper tail of the distribution of the returns. We consider a nonlinear mixed-integer portfolio selection model which takes into account several constraints used in fund management practice. The latter problem is NP-hard in general, and exact algorithms for its minimization, which are both effective and efficient, are still sought at present. Thus, to approximately solve this model we experience the heuristics Particle Swarm Optimization (PSO). Since PSO was originally conceived for unconstrained global optimization problems, we apply it to a novel reformulation of our mixed-integer model, where a standard exact penalty function is introduced.

Suggested Citation

  • Marco Corazza & Giovanni Fasano & Riccardo Gusso, 2011. "Particle Swarm Optimization with non-smooth penalty reformulation for a complex portfolio selection problem," Working Papers 2011_10, Department of Economics, University of Venice "Ca' Foscari".
  • Handle: RePEc:ven:wpaper:2011_10
    as

    Download full text from publisher

    File URL: https://www.unive.it/web/fileadmin/user_upload/dipartimenti/DEC/doc/Pubblicazioni_scientifiche/working_papers/2011/WP_DSE_corazza_fasano_gusso_10_11.doc.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nikos S. Thomaidis & Timotheos Angelidis & Vassilios Vassiliadis & Georgios Dounias, 2009. "Active Portfolio Management With Cardinality Constraints: An Application Of Particle Swarm Optimization," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 535-555.
    2. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    3. Wippern, Ronald F., 1971. "Utility Implications of Portfolio Selection and Performance Appraisal Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 6(3), pages 913-924, June.
    4. Fischer, T., 2003. "Risk capital allocation by coherent risk measures based on one-sided moments," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 135-146, February.
    5. Borges, Bernhard F. J. & Knetsch, Jack L., 1998. "Tests of market outcomes with asymmetric valuations of gains and losses: Smaller gains, fewer trades, and less value," Journal of Economic Behavior & Organization, Elsevier, vol. 33(2), pages 185-193, January.
    6. Martin R. Young, 1998. "A Minimax Portfolio Selection Rule with Linear Programming Solution," Management Science, INFORMS, vol. 44(5), pages 673-683, May.
    7. Enrique Ballestero, 2005. "Mean-Semivariance Efficient Frontier: A Downside Risk Model for Portfolio Selection," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(1), pages 1-15.
    8. Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
    9. Willard I. Zangwill, 1967. "Non-Linear Programming Via Penalty Functions," Management Science, INFORMS, vol. 13(5), pages 344-358, January.
    10. Chen, Zhiping & Wang, Yi, 2008. "Two-sided coherent risk measures and their application in realistic portfolio optimization," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2667-2673, December.
    11. Svetlozar Rachev & Sergio Ortobelli & Stoyan Stoyanov & Frank J. Fabozzi & Almira Biglova, 2008. "Desirable Properties Of An Ideal Risk Measure In Portfolio Theory," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 19-54.
    12. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    13. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Honghao Zhang & Yong Peng & Guangdong Tian & Danqi Wang & Pengpeng Xie, 2017. "Green material selection for sustainability: A hybrid MCDM approach," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-26, May.
    2. Ren‐Raw Chen & Wiliam Kaihua Huang & Shih‐Kuo Yeh, 2021. "Particle swarm optimization approach to portfolio construction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(3), pages 182-194, July.
    3. K. Liagkouras & K. Metaxiotis, 2018. "A new efficiently encoded multiobjective algorithm for the solution of the cardinality constrained portfolio optimization problem," Annals of Operations Research, Springer, vol. 267(1), pages 281-319, August.
    4. Alejandro Estrada-Moreno & Albert Ferrer & Angel A. Juan & Javier Panadero & Adil Bagirov, 2020. "The Non-Smooth and Bi-Objective Team Orienteering Problem with Soft Constraints," Mathematics, MDPI, vol. 8(9), pages 1-16, September.
    5. Marco Corazza & Giovanni Fasano & Stefania Funari & Riccardo Gusso, 2021. "MURAME parameter setting for creditworthiness evaluation: data-driven optimization," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 295-339, June.
    6. Marco Corazza & Giovanni Fasano & Stefania Funari & Riccardo Gusso, 2017. "PSO-based tuning of MURAME parameters for creditworthiness evaluation of Italian SMEs," Working Papers 04, Venice School of Management - Department of Management, Università Ca' Foscari Venezia.
    7. Marco Corazza & Giacomo Di Tollo & Giovanni Fasano & Raffaele Pesenti, 2015. "A novel initialization of PSO for costly portfolio selection problems," Working Papers 4, Venice School of Management - Department of Management, Università Ca' Foscari Venezia.
    8. Marco Corazza & Giacomo di Tollo & Giovanni Fasano & Raffaele Pesenti, 2021. "A novel hybrid PSO-based metaheuristic for costly portfolio selection problems," Annals of Operations Research, Springer, vol. 304(1), pages 109-137, September.
    9. Keshvari, Abolfazl, 2017. "A penalized method for multivariate concave least squares with application to productivity analysis," European Journal of Operational Research, Elsevier, vol. 257(3), pages 1016-1029.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amita Sharma & Sebastian Utz & Aparna Mehra, 2017. "Omega-CVaR portfolio optimization and its worst case analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 505-539, March.
    2. Chen, Zhiping & Wang, Yi, 2008. "Two-sided coherent risk measures and their application in realistic portfolio optimization," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2667-2673, December.
    3. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
    4. Fu, Tianwen & Zhuang, Xinkai & Hui, Yongchang & Liu, Jia, 2017. "Convex risk measures based on generalized lower deviation and their applications," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 27-37.
    5. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    6. Gotoh, Jun-ya & Takano, Yuichi, 2007. "Newsvendor solutions via conditional value-at-risk minimization," European Journal of Operational Research, Elsevier, vol. 179(1), pages 80-96, May.
    7. Karma, Otto & Sander, Priit, 2006. "The impact of financial leverage on risk of equity measured by loss-oriented risk measures: An option pricing approach," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1340-1356, December.
    8. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    9. Dipankar Mondal & N. Selvaraju, 2020. "Upside Beta Ratio: A Performance Measure For Potential-Seeking Investors," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(02), pages 1-26, April.
    10. Salo, Ahti & Doumpos, Michalis & Liesiö, Juuso & Zopounidis, Constantin, 2024. "Fifty years of portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(1), pages 1-18.
    11. Lwin, Khin T. & Qu, Rong & MacCarthy, Bart L., 2017. "Mean-VaR portfolio optimization: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 260(2), pages 751-766.
    12. Jun-ya Gotoh & Akiko Takeda & Rei Yamamoto, 2014. "Interaction between financial risk measures and machine learning methods," Computational Management Science, Springer, vol. 11(4), pages 365-402, October.
    13. Benati, Stefano & Rizzi, Romeo, 2007. "A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem," European Journal of Operational Research, Elsevier, vol. 176(1), pages 423-434, January.
    14. Daniel Espinoza & Eduardo Moreno, 2014. "A primal-dual aggregation algorithm for minimizing conditional value-at-risk in linear programs," Computational Optimization and Applications, Springer, vol. 59(3), pages 617-638, December.
    15. Zhiping Chen & Qianhui Hu & Ruiyue Lin, 2016. "Performance ratio-based coherent risk measure and its application," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 681-693, May.
    16. Víctor M. Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, "undated". "Portfolios in the Ibex 35 index: Alternative methods to the traditional framework, a comparative with the naive diversification in a pre- and post- crisis context," Documentos de Trabajo del ICAE 2015-07, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Jun 2015.
    17. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    18. Yao, Haixiang & Huang, Jinbo & Li, Yong & Humphrey, Jacquelyn E., 2021. "A general approach to smooth and convex portfolio optimization using lower partial moments," Journal of Banking & Finance, Elsevier, vol. 129(C).
    19. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.
    20. Krokhmal, Pavlo A. & Soberanis, Policarpio, 2010. "Risk optimization with p-order conic constraints: A linear programming approach," European Journal of Operational Research, Elsevier, vol. 201(3), pages 653-671, March.

    More about this item

    Keywords

    Portfolio selection; coherent risk measure; fund management constraints; NP-hard mathematical programming problem; PSO; exact penalty method; SP100 index's assets.;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ven:wpaper:2011_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sassano Sonia (email available below). General contact details of provider: https://edirc.repec.org/data/dsvenit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.