IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/367.html
   My bibliography  Save this paper

Empirical Pricing Performance in Long-Dated Crude Oil Derivatives: Do Models with Stochastic Interest Rates Matter?

Author

Abstract

Does modelling stochastic interest rates beyond stochastic volatility improve pricing performance on long-dated crude oil derivatives? To answer this question, we examine the empirical pricing performance of two forward price models for commodity futures and options: a deterministic interest rate - stochastic volatility model and a stochastic interest rate - stochastic volatility model. Both models allow for a correlation structure between the futures price process, the futures volatility process and the interest rate process. By estimating the model parameters from historical crude oil futures prices and option prices, we find that stochastic interest rate models improve pricing performance on long-dated crude oil derivatives, with the effect being more pronounced when the interest rate volatility is relatively high. Several results relevant to practitioners have also emerged from our empirical investigations. With regards to balancing the trade-off between precision and computational effort, we find that two-factor models would provide good fit on long-dated derivative prices thus there is no need to add more factors. We also find empirical evidence for a negative correlation between crude oil futures prices and interest rates.

Suggested Citation

  • Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2016. "Empirical Pricing Performance in Long-Dated Crude Oil Derivatives: Do Models with Stochastic Interest Rates Matter?," Research Paper Series 367, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:367
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/qfr-archive-03/QFR-rp367.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anders B. Trolle & Eduardo S. Schwartz, 2009. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4423-4461, November.
    2. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    3. van Haastrecht, Alexander & Lord, Roger & Pelsser, Antoon & Schrager, David, 2009. "Pricing long-dated insurance contracts with stochastic interest rates and stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 436-448, December.
    4. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    5. Amin, Kaushik I & Ng, Victor K, 1993. "Option Valuation with Systematic Stochastic Volatility," Journal of Finance, American Finance Association, vol. 48(3), pages 881-910, July.
    6. Alexander Van Haastrecht & Antoon Pelsser, 2011. "Accounting for stochastic interest rates, stochastic volatility and a general correlation structure in the valuation of forward starting options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(2), pages 103-125, February.
    7. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    8. Akram, Q. Farooq, 2009. "Commodity prices, interest rates and the dollar," Energy Economics, Elsevier, vol. 31(6), pages 838-851, November.
    9. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    10. Grzelak, Lech & Oosterlee, Kees, 2009. "On The Heston Model with Stochastic Interest Rates," MPRA Paper 20620, University Library of Munich, Germany, revised 18 Jan 2010.
    11. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Pricing and hedging long-term options," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 277-318.
    12. Gibson, Rajna & Schwartz, Eduardo S, 1990. "Stochastic Convenience Yield and the Pricing of Oil Contingent Claims," Journal of Finance, American Finance Association, vol. 45(3), pages 959-976, July.
    13. Fusai, Gianluca & Marena, Marina & Roncoroni, Andrea, 2008. "Analytical pricing of discretely monitored Asian-style options: Theory and application to commodity markets," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2033-2045, October.
    14. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    15. Kaushik I. Amin & Robert A. Jarrow, 1992. "Pricing Options On Risky Assets In A Stochastic Interest Rate Economy1," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 217-237, October.
    16. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2015. "Pricing of Long-dated Commodity Derivatives with Stochastic Volatility and Stochastic Interest Rates," Research Paper Series 366, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1997. "Estimation of stochastic volatility models with diagnostics," Journal of Econometrics, Elsevier, vol. 81(1), pages 159-192, November.
    18. Jaime Casassus & Pierre Collin‐Dufresne, 2005. "Stochastic Convenience Yield Implied from Commodity Futures and Interest Rates," Journal of Finance, American Finance Association, vol. 60(5), pages 2283-2331, October.
    19. Rainer Schöbel & Jianwei Zhu, 1999. "Stochastic Volatility With an Ornstein–Uhlenbeck Process: An Extension," Review of Finance, European Finance Association, vol. 3(1), pages 23-46.
    20. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    21. Hull, John & White, Alan, 1993. "One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(2), pages 235-254, June.
    22. Arora, Vipin & Tanner, Matthew, 2013. "Do oil prices respond to real interest rates?," Energy Economics, Elsevier, vol. 36(C), pages 546-555.
    23. Kay Pilz & Erik Schlogl, 2009. "A Hybrid Commodity and Interest Rate," Research Paper Series 261, Quantitative Finance Research Centre, University of Technology, Sydney.
    24. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    25. Gonzalo Cortazar & Lorenzo Naranjo, 2006. "An N‐factor Gaussian model of oil futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(3), pages 243-268, March.
    26. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    27. Mark Broadie & Mikhail Chernov & Michael Johannes, 2007. "Model Specification and Risk Premia: Evidence from Futures Options," Journal of Finance, American Finance Association, vol. 62(3), pages 1453-1490, June.
    28. V. Vance Roley & Rick Troll, 1983. "The impact of new economic information on the volatility of short-term interest rates," Economic Review, Federal Reserve Bank of Kansas City, vol. 68(Feb), pages 3-15.
    29. Lech A. Grzelak & Cornelis W. Oosterlee & Sacha Van Weeren, 2012. "Extension of stochastic volatility equity models with the Hull--White interest rate process," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 89-105, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Cheng & Christina Sklibosios Nikitopoulos & Erik Schlögl, 2019. "Interest rate risk in long‐dated commodity options positions: To hedge or not to hedge?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 109-127, January.
    2. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2016. "Empirical Hedging Performance on Long-Dated Crude Oil Derivatives," Research Paper Series 376, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Benjamin Tin Chun Cheng, 2017. "Pricing and Hedging of Long-Dated Commodity Derivatives," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2017, January-A.
    4. repec:uts:finphd:37 is not listed on IDEAS
    5. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2016. "Hedging Futures Options with Stochastic Interest Rates," Research Paper Series 375, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. P. Karlsson & K. F. Pilz & E. Schlögl, 2017. "Calibrating a market model with stochastic volatility to commodity and interest rate risk," Quantitative Finance, Taylor & Francis Journals, vol. 17(6), pages 907-925, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Benjamin & Nikitopoulos, Christina Sklibosios & Schlögl, Erik, 2018. "Pricing of long-dated commodity derivatives: Do stochastic interest rates matter?," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 148-166.
    2. Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2015. "Pricing of Long-dated Commodity Derivatives with Stochastic Volatility and Stochastic Interest Rates," Research Paper Series 366, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Benjamin Tin Chun Cheng, 2017. "Pricing and Hedging of Long-Dated Commodity Derivatives," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2017, January-A.
    4. repec:uts:finphd:37 is not listed on IDEAS
    5. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    6. Cortazar, Gonzalo & Lopez, Matias & Naranjo, Lorenzo, 2017. "A multifactor stochastic volatility model of commodity prices," Energy Economics, Elsevier, vol. 67(C), pages 182-201.
    7. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    8. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.
    9. Anders B. Trolle & Eduardo S. Schwartz, 2006. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," NBER Working Papers 12744, National Bureau of Economic Research, Inc.
    10. Anh Ngoc Lai & Constantin Mellios, 2016. "Valuation of commodity derivatives with an unobservable convenience yield," Post-Print halshs-01183166, HAL.
    11. Crosby, John & Frau, Carme, 2022. "Jumps in commodity prices: New approaches for pricing plain vanilla options," Energy Economics, Elsevier, vol. 114(C).
    12. Hilliard, Jimmy E. & Hilliard, Jitka, 2019. "A jump-diffusion model for pricing and hedging with margined options: An application to Brent crude oil contracts," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 137-155.
    13. Anders B. Trolle & Eduardo S. Schwartz, 2009. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4423-4461, November.
    14. Back, Janis & Prokopczuk, Marcel & Rudolf, Markus, 2013. "Seasonality and the valuation of commodity options," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 273-290.
    15. Chris Brooks & Marcel Prokopczuk, 2013. "The dynamics of commodity prices," Quantitative Finance, Taylor & Francis Journals, vol. 13(4), pages 527-542, March.
    16. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    17. Tore S. Kleppe & Atle Oglend, 2019. "Can limits‐to‐arbitrage from bounded storage improve commodity term‐structure modeling?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(7), pages 865-889, July.
    18. van Haastrecht, Alexander & Lord, Roger & Pelsser, Antoon & Schrager, David, 2009. "Pricing long-dated insurance contracts with stochastic interest rates and stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 436-448, December.
    19. John Crosby, 2008. "A multi-factor jump-diffusion model for commodities," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 181-200.
    20. P. Karlsson & K. F. Pilz & E. Schlögl, 2017. "Calibrating a market model with stochastic volatility to commodity and interest rate risk," Quantitative Finance, Taylor & Francis Journals, vol. 17(6), pages 907-925, June.
    21. Gonzalo Cortazar & Simon Gutierrez & Hector Ortega, 2016. "Empirical Performance of Commodity Pricing Models: When is it Worthwhile to Use a Stochastic Volatility Specification?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(5), pages 457-487, May.

    More about this item

    Keywords

    futures options pricing; stochastic interest rates; correlations; long-dated crude oil derivatives;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.