IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v17y2017i4p515-529.html
   My bibliography  Save this article

The Fundamental Theorem of Derivative Trading - exposition, extensions and experiments

Author

Listed:
  • Simon Ellersgaard
  • Martin Jönsson
  • Rolf Poulsen

Abstract

When estimated volatilities are not in perfect agreement with reality, delta-hedged option portfolios will incur a non-zero profit-and-loss over time. However, there is a surprisingly simple formula for the resulting hedge error, which has been known since the late 1990s. We call this The Fundamental Theorem of Derivative Trading. This paper is a survey with twists on that result. We prove a more general version of it and discuss various extensions and applications, from incorporating a multi-dimensional jump framework to deriving the Dupire–Gyöngy–Derman–Kani formula. We also consider its practical consequences, both in simulation experiments and on empirical data, thus demonstrating the benefits of hedging with implied volatility.

Suggested Citation

  • Simon Ellersgaard & Martin Jönsson & Rolf Poulsen, 2017. "The Fundamental Theorem of Derivative Trading - exposition, extensions and experiments," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 515-529, April.
  • Handle: RePEc:taf:quantf:v:17:y:2017:i:4:p:515-529
    DOI: 10.1080/14697688.2016.1222078
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2016.1222078
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2016.1222078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicole El Karoui & Monique Jeanblanc‐Picquè & Steven E. Shreve, 1998. "Robustness of the Black and Scholes Formula," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 93-126, April.
    2. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
    3. Marc Romano & Nizar Touzi, 1997. "Contingent Claims and Market Completeness in a Stochastic Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 399-412, October.
    4. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    5. Emanuel Derman & Iraj Kani, 1998. "Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 61-110.
    6. Peter P. Carr & Robert A. Jarrow, 2008. "The Stop-Loss Start-Gain Paradox and Option Valuation: A new Decomposition into Intrinsic and Time Value," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 4, pages 61-84, World Scientific Publishing Co. Pte. Ltd..
    7. Henrard Marc, 2003. "Parameter risk in the Black and Scholes model," Risk and Insurance 0310002, University Library of Munich, Germany.
    8. Vicky Henderson & David Hobson & Sam Howison & Tino Kluge, 2005. "A Comparison of Option Prices Under Different Pricing Measures in a Stochastic Volatility Model with Correlation," Review of Derivatives Research, Springer, vol. 8(1), pages 5-25, June.
    9. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2014. "Volatility is rough," Papers 1410.3394, arXiv.org.
    10. Haug, Espen Gaarder & Taleb, Nassim Nicholas, 2011. "Option traders use (very) sophisticated heuristics, never the Black-Scholes-Merton formula," Journal of Economic Behavior & Organization, Elsevier, vol. 77(2), pages 97-106, February.
    11. Rolf Poulsen & Klaus Reiner Schenk-Hoppe & Christian-Oliver Ewald, 2009. "Risk minimization in stochastic volatility models: model risk and empirical performance," Quantitative Finance, Taylor & Francis Journals, vol. 9(6), pages 693-704.
    12. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    13. Antje Dudenhausen & Erik Schlögl & Lutz Schlögl, 1999. "Robustness of Gaussian Hedges and the Hedging of Fixed Income Derivatives," Research Paper Series 19, Quantitative Finance Research Centre, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Armstrong & Claudio Bellani & Damiano Brigo & Thomas Cass, 2021. "Option pricing models without probability: a rough paths approach," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1494-1521, October.
    2. John Armstrong & Andrei Ionescu, 2023. "Gamma Hedging and Rough Paths," Papers 2309.05054, arXiv.org, revised Mar 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Vasile BRÄ‚TIAN, 2019. "Evaluation of Options using the Black-Scholes Methodology," Expert Journal of Economics, Sprint Investify, vol. 7(2), pages 59-65.
    3. Kristensen, Dennis & Mele, Antonio, 2011. "Adding and subtracting Black-Scholes: A new approach to approximating derivative prices in continuous-time models," Journal of Financial Economics, Elsevier, vol. 102(2), pages 390-415.
    4. repec:dau:papers:123456789/5374 is not listed on IDEAS
    5. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    6. C. Mancini, 2002. "The European options hedge perfectly in a Poisson-Gaussian stock market model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(2), pages 87-102.
    7. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    8. Alexander Lipton & Artur Sepp, 2022. "Toward an efficient hybrid method for pricing barrier options on assets with stochastic volatility," Papers 2202.07849, arXiv.org.
    9. Mele, Antonio, 2004. "General properties of rational stock-market fluctuations," LSE Research Online Documents on Economics 24701, London School of Economics and Political Science, LSE Library.
    10. Paola Zerilli, 2005. "Option pricing and spikes in volatility: theoretical and empirical analysis," Money Macro and Finance (MMF) Research Group Conference 2005 76, Money Macro and Finance Research Group.
    11. Silvia Muzzioli, 2013. "The Information Content of Option-Based Forecasts of Volatility: Evidence from the Italian Stock Market," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-46.
    12. Matic, Jovanka Lili & Packham, Natalie & Härdle, Wolfgang Karl, 2021. "Hedging Cryptocurrency Options," MPRA Paper 110985, University Library of Munich, Germany.
    13. José Fajardo & Ernesto Mordecki, 2006. "Skewness Premium with Lévy Processes," IBMEC RJ Economics Discussion Papers 2006-04, Economics Research Group, IBMEC Business School - Rio de Janeiro.
    14. Rasmussen, Nicki Søndergaard, 2002. "Hedging with a Misspecified Model," Finance Working Papers 02-15, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    15. Balder, Sven & Brandl, Michael & Mahayni, Antje, 2009. "Effectiveness of CPPI strategies under discrete-time trading," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 204-220, January.
    16. Antonio Mele, 2003. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 679-716, July.
    17. Haug, Espen Gaarder & Taleb, Nassim Nicholas, 2011. "Option traders use (very) sophisticated heuristics, never the Black-Scholes-Merton formula," Journal of Economic Behavior & Organization, Elsevier, vol. 77(2), pages 97-106, February.
    18. Lasko Basnarkov & Viktor Stojkoski & Zoran Utkovski & Ljupco Kocarev, 2019. "Option Pricing With Heavy-Tailed Distributions Of Logarithmic Returns," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-35, November.
    19. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.
    20. Carol Alexander & Alexander Rubinov & Markus Kalepky & Stamatis Leontsinis, 2012. "Regime‐dependent smile‐adjusted delta hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(3), pages 203-229, March.
    21. Yunbi An & Wulin Suo, 2009. "An Empirical Comparison of Option‐Pricing Models in Hedging Exotic Options," Financial Management, Financial Management Association International, vol. 38(4), pages 889-914, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:17:y:2017:i:4:p:515-529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.