IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/182.html
   My bibliography  Save this paper

Valuation of Options in a Setting with Happiness-Augmented Preferences

Author

Listed:
  • Stephen Satchell

    (Faculty of Economics, University of Cambridge)

  • Vincenzo Merella

    (Birbeck College, University of London)

Abstract

We derive a pricing formula for a European call option written on equity in a framework where returns and consumption covary with external happiness. Being a non-tradable variable, happiness is regarded as an extra variable in a parameterised version of state dependent utility. We derive an extended version of the Black-Scholes (BS) formula and find that, in an optimistic environment (that is, where a high growth rate of happiness is expected), the standard BS formula may underestimate the value of the call option, and overestimate its sensitivity to changes in the underlying parameters. Under the assumption of lognormality of the happiness distribution, testable hypotheses for quality of hedging strategies can also be implemented.

Suggested Citation

  • Stephen Satchell & Vincenzo Merella, 2006. "Valuation of Options in a Setting with Happiness-Augmented Preferences," Research Paper Series 182, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:182
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/qfr-archive-02/QFR-rp182.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Hirshleifer & Danling Jiang, 2010. "A Financing-Based Misvaluation Factor and the Cross-Section of Expected Returns," The Review of Financial Studies, Society for Financial Studies, vol. 23(9), pages 3401-3436.
    2. Muhammad Kashif & Thomas Leirvik, 2022. "The MAX Effect in an Oil Exporting Country: The Case of Norway," JRFM, MDPI, vol. 15(4), pages 1-16, March.
    3. Dash, Saumya Ranjan & Maitra, Debasish, 2018. "Does sentiment matter for stock returns? Evidence from Indian stock market using wavelet approach," Finance Research Letters, Elsevier, vol. 26(C), pages 32-39.
    4. Klaus Grobys & James W. Kolari & Jere Rutanen, 2022. "Factor momentum, option-implied volatility scaling, and investor sentiment," Journal of Asset Management, Palgrave Macmillan, vol. 23(2), pages 138-155, March.
    5. Papapostolou, Nikos C. & Pouliasis, Panos K. & Nomikos, Nikos K. & Kyriakou, Ioannis, 2016. "Shipping investor sentiment and international stock return predictability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 81-94.
    6. Shahzad, Syed Jawad Hussain & Raza, Naveed & Balcilar, Mehmet & Ali, Sajid & Shahbaz, Muhammad, 2017. "Can economic policy uncertainty and investors sentiment predict commodities returns and volatility?," Resources Policy, Elsevier, vol. 53(C), pages 208-218.
    7. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    8. Chue, Timothy K. & Gul, Ferdinand A. & Mian, G. Mujtaba, 2019. "Aggregate investor sentiment and stock return synchronicity," Journal of Banking & Finance, Elsevier, vol. 108(C).
    9. Hou, Yang & Meng, Jiayin, 2018. "The momentum effect in the Chinese market and its relationship with the simultaneous and the lagged investor sentiment," MPRA Paper 94838, University Library of Munich, Germany.
    10. Keval Amin & Erica Harris, 2022. "The Effect of Investor Sentiment on Nonprofit Donations," Journal of Business Ethics, Springer, vol. 175(2), pages 427-450, January.
    11. Kirtac, Kemal & Germano, Guido, 2024. "Sentiment trading with large language models," Finance Research Letters, Elsevier, vol. 62(PB).
    12. Zheng, Yao & Osmer, Eric & Zhang, Ruiyi, 2018. "Sentiment hedging: How hedge funds adjust their exposure to market sentiment," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 147-160.
    13. Shen, Yiran & Liu, Chang & Sun, Xiaolei & Guo, Kun, 2023. "Investor sentiment and the Chinese new energy stock market: A risk–return perspective," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 395-408.
    14. Po-Hsuan Hsu & Dongmei Li & Qin Li & Siew Hong Teoh & Kevin Tseng, 2022. "Valuation of New Trademarks," Management Science, INFORMS, vol. 68(1), pages 257-279, January.
    15. Aissia, Dorsaf Ben, 2014. "IPO first-day returns: Skewness preference, investor sentiment and uncertainty underlying factors," Review of Financial Economics, Elsevier, vol. 23(3), pages 148-154.
    16. Sapkota, Niranjan, 2022. "News-based sentiment and bitcoin volatility," International Review of Financial Analysis, Elsevier, vol. 82(C).
    17. Wagner, Moritz & Lee, John Byong-Tek & Margaritis, Dimitris, 2022. "Mutual fund flows and seasonalities in stock returns," Journal of Banking & Finance, Elsevier, vol. 144(C).
    18. van Eyden, Reneé & Gupta, Rangan & Nielsen, Joshua & Bouri, Elie, 2023. "Investor sentiment and multi-scale positive and negative stock market bubbles in a panel of G7 countries," Journal of Behavioral and Experimental Finance, Elsevier, vol. 38(C).
    19. Cathy Yi-Hsuan Chen & Thomas C. Chiang, 2017. "Surprises, sentiments, and the expectations hypothesis of the term structure of interest rates," Review of Quantitative Finance and Accounting, Springer, vol. 49(1), pages 1-28, July.
    20. Zhou, Liyun & Huang, Jialiang, 2020. "Contagion of future-level sentiment in Chinese Agricultural Futures Markets," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.