IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/126.html
   My bibliography  Save this paper

Evaluation of Point Barrier Options in a Path Integral Framework Using Fourier-Hermite Expansions

Author

Abstract

The pricing of point barrier or discretely monitored barrier options is a difficult problem. In general, there is no known closed form solution for pricing such options. In this paper we develop a path integral approach to the evaluation of barrier options. This leads to a backward recursion functional equation linking the pricing functions at successive barrier points. We solve this functional equation by expanding the pricing functions in Fourier-Hermite series. The backward recursion functional equation then becomes the backward recurrence relation for the coefficients in the Fourier-Hermite expansion of the pricing functions. We thus obtain a very efficient and accurate method for generating the pricing function at any barrier point. We perform a number of numerical experiments with the method in order to gain some understanding of the nature of convergence. We present results for various volatility values and different numbers of basis functions in the Fourier-Hermite expansion. Comparisons will be given between pricing of point barriers in the path integral framework and by use of finite difference methods.

Suggested Citation

  • Carl Chiarella & Nadima El-Hassan & Adam Kucera, 2004. "Evaluation of Point Barrier Options in a Path Integral Framework Using Fourier-Hermite Expansions," Research Paper Series 126, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:126
    as

    Download full text from publisher

    File URL: http://www.qfrc.uts.edu.au/research/research_papers/rp126.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carl Chiarella & Nadima El-Hassan, 1997. "Evaluation of Derivative Security Prices in the Heath-Jarrow-Morton Framework as Path Integrals Using Fast Fourier Transform Techniques," Working Paper Series 72, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    2. Chiarella, Carl & El-Hassan, Nadima & Kucera, Adam, 1999. "Evaluation of American option prices in a path integral framework using Fourier-Hermite series expansions," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1387-1424, September.
    3. Mark Broadie & Paul Glasserman & Steven Kou, 1997. "A Continuity Correction for Discrete Barrier Options," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 325-349, October.
    4. Eydeland, A, 1994. "A Fast Algorithm for Computing Integrals in Function Spaces: Financial Applications," Computational Economics, Springer;Society for Computational Economics, vol. 7(4), pages 277-285.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew Matacz, 2000. "Path dependent option pricing: the path integral partial averaging method," Science & Finance (CFM) working paper archive 500034, Science & Finance, Capital Fund Management.
    2. Andrew Matacz, 2000. "Path Dependent Option Pricing: the path integral partial averaging method," Papers cond-mat/0005319, arXiv.org.
    3. Zura Kakushadze, 2014. "Path Integral and Asset Pricing," Papers 1410.1611, arXiv.org, revised Aug 2016.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Matacz, 2000. "Path dependent option pricing: the path integral partial averaging method," Science & Finance (CFM) working paper archive 500034, Science & Finance, Capital Fund Management.
    2. Andrew Matacz, 2000. "Path Dependent Option Pricing: the path integral partial averaging method," Papers cond-mat/0005319, arXiv.org.
    3. Chiarella, Carl & El-Hassan, Nadima & Kucera, Adam, 1999. "Evaluation of American option prices in a path integral framework using Fourier-Hermite series expansions," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1387-1424, September.
    4. DECAMPS, Marc & DE SCHEPPER, Ann & GOOVAERTS, Marc, "undated". "Path integrals as a tool for pricing interest rate contingent claims: The case of reflecting and absorbing boundaries," Working Papers 2003027, University of Antwerp, Faculty of Business and Economics.
    5. Giacomo Bormetti & Sofia Cazzaniga, 2011. "Multiplicative noise, fast convolution, and pricing," Papers 1107.1451, arXiv.org.
    6. Giacomo Bormetti & Sofia Cazzaniga, 2014. "Multiplicative noise, fast convolution and pricing," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 481-494, March.
    7. Marco Rosa-Clot & Stefano Taddei, 2002. "A Path Integral Approach To Derivative Security Pricing Ii: Numerical Methods," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 123-146.
    8. Xie, Fei & He, Zhijian & Wang, Xiaoqun, 2019. "An importance sampling-based smoothing approach for quasi-Monte Carlo simulation of discrete barrier options," European Journal of Operational Research, Elsevier, vol. 274(2), pages 759-772.
    9. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    10. Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.
    11. Jorge Ignacio Gonz'alez C'azares & Aleksandar Mijatovi'c & Ger'onimo Uribe Bravo, 2018. "Geometrically Convergent Simulation of the Extrema of L\'{e}vy Processes," Papers 1810.11039, arXiv.org, revised Jun 2021.
    12. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    13. Ramaprasad Bhar & Carl Chiarella, 1997. "Interest rate futures: estimation of volatility parameters in an arbitrage-free framework," Applied Mathematical Finance, Taylor & Francis Journals, vol. 4(4), pages 181-199.
    14. Lokeshwar, Vikranth & Bharadwaj, Vikram & Jain, Shashi, 2022. "Explainable neural network for pricing and universal static hedging of contingent claims," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    15. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    16. C. E. Phelan & D. Marazzina & G. Germano, 2020. "Pricing methods for α-quantile and perpetual early exercise options based on Spitzer identities," Quantitative Finance, Taylor & Francis Journals, vol. 20(6), pages 899-918, June.
    17. Tian-Shyr Dai & Yuh-Yuan Fang & Yuh-Dauh Lyuu, 2005. "Analytics for geometric average trigger reset options," Applied Economics Letters, Taylor & Francis Journals, vol. 12(13), pages 835-840.
    18. Ernst, Philip A. & Rogers, L.C.G. & Zhou, Quan, 2017. "The value of foresight," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3913-3927.
    19. Kenichiro Shiraya & Cong Wang & Akira Yamazaki, 2021. "A general control variate method for time-changed Lévy processes: An application to options pricing," CARF F-Series CARF-F-499, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    20. Holger Fink & Stefan Mittnik, 2021. "Quanto Pricing beyond Black–Scholes," JRFM, MDPI, vol. 14(3), pages 1-27, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.