IDEAS home Printed from https://ideas.repec.org/p/urv/wpaper/2072-266573.html
   My bibliography  Save this paper

On the existence of the Dutta-Ray’s egalitarian solution

Author

Listed:
  • Llerena Garrés, Francesc
  • Mauri Masdeu, Llúcia

Abstract

A class of balanced games, called exact partition games, is introduced. Within this class, it is shown that the egalitarian solution of Dutta and Ray (1989) behaves as in the class of convex games. Moreover, we provide two axiomatic characterization by means of suitable properties such as consistency, rationality and Lorenz-fairness. As a by-product, alternative characterizations of the egalitarian solution over the class of convex games are obtained.

Suggested Citation

  • Llerena Garrés, Francesc & Mauri Masdeu, Llúcia, 2016. "On the existence of the Dutta-Ray’s egalitarian solution," Working Papers 2072/266573, Universitat Rovira i Virgili, Department of Economics.
  • Handle: RePEc:urv:wpaper:2072/266573
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/2072/266573
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dutta, Bhaskar & Ray, Debraj, 1989. "A Concept of Egalitarianism under Participation Constraints," Econometrica, Econometric Society, vol. 57(3), pages 615-635, May.
    2. Jens Leth Hougaard & Lars Thorlund-Petersen & Bezalel Peleg, 2001. "On the set of Lorenz-maximal imputations in the core of a balanced game," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(2), pages 147-165.
    3. Dutta, B, 1990. "The Egalitarian Solution and Reduced Game Properties in Convex Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(2), pages 153-169.
    4. Toru Hokari, 2002. "Monotone-path Dutta-Ray solutions on convex games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 19(4), pages 825-844.
    5. Arin, Javier & Kuipers, Jeroen & Vermeulen, Dries, 2003. "Some characterizations of egalitarian solutions on classes of TU-games," Mathematical Social Sciences, Elsevier, vol. 46(3), pages 327-345, December.
    6. Francesc Llerena & Llúcia Mauri, 2015. "On the Lorenz-maximal allocations in the imputation set," Economics Bulletin, AccessEcon, vol. 35(4), pages 2475-2481.
    7. Klijn, F. & Slikker, M. & Tijs, S.H. & Zarzuelo, I., 2000. "The egalitarian solution for convex games : Some characterizations," Other publications TiSEM 614b77cd-430c-4048-856f-8, Tilburg University, School of Economics and Management.
    8. Tijs, S., 1981. "Bounds for the core of a game and the t-value," Other publications TiSEM ebc650eb-f25e-4802-ba0b-2, Tilburg University, School of Economics and Management.
    9. Klijn, Flip & Slikker, Marco & Tijs, Stef & Zarzuelo, Jose, 2000. "The egalitarian solution for convex games: some characterizations," Mathematical Social Sciences, Elsevier, vol. 40(1), pages 111-121, July.
    10. T. E. S. Raghavan & Tamás Solymosi, 2001. "Assignment games with stable core," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(2), pages 177-185.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Llerena, Francesc & Mauri, Llúcia, 2017. "On the existence of the Dutta–Ray’s egalitarian solution," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 92-99.
    2. Calleja, Pedro & Llerena, Francesc & Sudhölter, Peter, 2021. "Axiomatizations of Dutta-Ray’s egalitarian solution on the domain of convex games," Journal of Mathematical Economics, Elsevier, vol. 95(C).
    3. Takafumi Otsuka, 2020. "Egalitarian solution for games with discrete side payment," Papers 2003.10059, arXiv.org.
    4. Calleja, Pedro & Llerena, Francesc & Sudhölter, Peter, 2019. "Welfare egalitarianism in surplus-sharing problems and convex games," Discussion Papers on Economics 6/2019, University of Southern Denmark, Department of Economics.
    5. Dietzenbacher, Bas & Yanovskaya, E., 2020. "Antiduality in Exact Partition Games," Other publications TiSEM 0b8133f8-cab7-46ae-8881-0, Tilburg University, School of Economics and Management.
    6. Dietzenbacher, Bas & Dogan, Emre, 2024. "Population monotonicity and egalitarianism," Research Memorandum 007, Maastricht University, Graduate School of Business and Economics (GSBE).
    7. Francesc Llerena & Cori Vilella, 2013. "An axiomatic characterization of the strong constrained egalitarian solution," Economics Bulletin, AccessEcon, vol. 33(2), pages 1438-1445.
    8. Dietzenbacher, Bas, 2019. "The Procedural Egalitarian Solution and Egalitarian Stable Games," Discussion Paper 2019-007, Tilburg University, Center for Economic Research.
    9. Dietzenbacher, Bas, 2019. "The Procedural Egalitarian Solution and Egalitarian Stable Games," Other publications TiSEM 6caea8c0-1dcd-4038-88da-b, Tilburg University, School of Economics and Management.
    10. Francesc Llerena & Carles Rafels & Cori Vilella, 2008. "A simple procedure for computing strong constrained egalitarian allocations," Working Papers 327, Barcelona School of Economics.
    11. Hougaard, Jens Leth & Østerdal, Lars Peter, 2010. "Monotonicity of social welfare optima," Games and Economic Behavior, Elsevier, vol. 70(2), pages 392-402, November.
    12. Dietzenbacher, Bas & Yanovskaya, Elena, 2020. "Antiduality in exact partition games," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 116-121.
    13. Branzei, Rodica & Dimitrov, Dinko & Tijs, Stef, 2004. "Egalitarianism in convex fuzzy games," Mathematical Social Sciences, Elsevier, vol. 47(3), pages 313-325, May.
    14. Dietzenbacher, Bas & Borm, Peter & Hendrickx, Ruud, 2017. "The procedural egalitarian solution," Games and Economic Behavior, Elsevier, vol. 106(C), pages 179-187.
    15. Bas Dietzenbacher & Elena Yanovskaya, 2021. "Consistency of the equal split-off set," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(1), pages 1-22, March.
    16. Dietzenbacher, Bas & Yanovskaya, E., 2019. "Consistency of the Equal Split-Off Set," Other publications TiSEM 2846ead5-71b5-4d0c-bf0b-5, Tilburg University, School of Economics and Management.
    17. Francesc Llerena & Llúcia Mauri, 2016. "Reduced games and egalitarian solutions," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 1053-1069, November.
    18. J. M. Alonso-Meijide & J. Costa & I. García-Jurado & J. C. Gonçalves-Dosantos, 2020. "On egalitarian values for cooperative games with a priori unions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 672-688, October.
    19. Lee, Joosung & Driessen, Theo S.H., 2012. "Sequentially two-leveled egalitarianism for TU games: Characterization and application," European Journal of Operational Research, Elsevier, vol. 220(3), pages 736-743.
    20. Brânzei, R. & Llorca, N. & Sánchez-Soriano, J. & Tijs, S.H., 2007. "Egalitarianism in Multi-Choice Games," Discussion Paper 2007-55, Tilburg University, Center for Economic Research.

    More about this item

    Keywords

    Jocs; Teoria de; 51 - Matemàtiques;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:urv:wpaper:2072/266573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ariadna Casals (email available below). General contact details of provider: https://edirc.repec.org/data/deurves.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.