IDEAS home Printed from https://ideas.repec.org/p/upf/upfgen/940.html
   My bibliography  Save this paper

Tying up the loose ends in simple correspondence analysis

Author

Abstract

Although correspondence analysis is now widely available in statistical software packages and applied in a variety of contexts, notably the social and environmental sciences, there are still some misconceptions about this method as well as unresolved issues which remain controversial to this day. In this paper we hope to settle these matters, namely (i) the way CA measures variance in a two-way table and how to compare variances between tables of different sizes, (ii) the influence, or rather lack of influence, of outliers in the usual CA maps, (iii) the scaling issue and the biplot interpretation of maps,(iv) whether or not to rotate a solution, and (v) statistical significance of results.

Suggested Citation

  • Michael Greenacre, 2006. "Tying up the loose ends in simple correspondence analysis," Economics Working Papers 940, Department of Economics and Business, Universitat Pompeu Fabra.
  • Handle: RePEc:upf:upfgen:940
    as

    Download full text from publisher

    File URL: https://econ-papers.upf.edu/papers/940.pdf
    File Function: Whole Paper
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Greenacre, 2008. "Correspondence analysis of raw data," Economics Working Papers 1112, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2009.
    2. K. Ruben Gabriel, 2002. "Goodness of fit of biplots and correspondence analysis," Biometrika, Biometrika Trust, vol. 89(2), pages 423-436, June.
    3. M. O. Hill, 1974. "Correspondence Analysis: A Neglected Multivariate Method," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 23(3), pages 340-354, November.
    4. John Aitchison & Michael Greenacre, 2002. "Biplots of compositional data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(4), pages 375-392, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Greenacre & Paul Lewi, 2009. "Distributional Equivalence and Subcompositional Coherence in the Analysis of Compositional Data, Contingency Tables and Ratio-Scale Measurements," Journal of Classification, Springer;The Classification Society, vol. 26(1), pages 29-54, April.
    2. Marie Chavent & Vanessa Kuentz-Simonet & Jérôme Saracco, 2012. "Orthogonal rotation in PCAMIX," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(2), pages 131-146, July.
    3. repec:jss:jstsof:31:i08 is not listed on IDEAS
    4. Lorenzo-Seva, Urbano & van de Velden, Michel & Kiers, Henk A. L., 2009. "CAR: A MATLAB Package to Compute Correspondence Analysis with Rotations," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i08).
    5. Lorenzo-Seva, U. & van de Velden, M. & Kiers, H.A.L., 2007. "Oblique rotation in correspondence analysis: a step forward in the simplest interpretation," Econometric Institute Research Papers EI 2007-25, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Polak, Marike & Heiser, Willem J. & de Rooij, Mark, 2009. "Two types of single-peaked data: Correspondence analysis as an alternative to principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3117-3128, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Greenacre & Paul Lewi, 2009. "Distributional Equivalence and Subcompositional Coherence in the Analysis of Compositional Data, Contingency Tables and Ratio-Scale Measurements," Journal of Classification, Springer;The Classification Society, vol. 26(1), pages 29-54, April.
    2. Michael Greenacre & Paul Lewi, 2005. "Distributional equivalence and subcompositional coherence in the analysis of contingency tables, ratio-scale measurements and compositional data," Economics Working Papers 908, Department of Economics and Business, Universitat Pompeu Fabra, revised Aug 2007.
    3. Greenacre, Michael, 2009. "Power transformations in correspondence analysis," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3107-3116, June.
    4. Michael Greenacre, 2003. "Singular value decomposition of matched matrices," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(10), pages 1101-1113.
    5. Udina, Frederic, 2005. "Interactive Biplot Construction," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 13(i05).
    6. Michael Greenacre, 2002. "Ratio maps and correspondence analysis," Economics Working Papers 598, Department of Economics and Business, Universitat Pompeu Fabra.
    7. Kudlats, Jerry & Money, Arthur & Hair, Joseph F., 2014. "Correspondence analysis: A promising technique to interpret qualitative data in family business research," Journal of Family Business Strategy, Elsevier, vol. 5(1), pages 30-40.
    8. Beaton, Derek & Chin Fatt, Cherise R. & Abdi, Hervé, 2014. "An ExPosition of multivariate analysis with the singular value decomposition in R," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 176-189.
    9. Michael Greenacre & Anna Torres, 2002. "Measuring asymmetries in brand associations using correspondence analysis," Economics Working Papers 630, Department of Economics and Business, Universitat Pompeu Fabra.
    10. Michael Greenacre & Rafael Pardo, 2004. "Subset correspondence analysis: Visualizing relationships among a selected set of response categories from a questionnaire survey," Economics Working Papers 791, Department of Economics and Business, Universitat Pompeu Fabra.
    11. B. Baris Alkan & Afsin Sahin, 2011. "Measuring inequalities in the distribution of health workers by bi-plot approach: The case of Turkey," Journal of Economics and Behavioral Studies, AMH International, vol. 2(2), pages 57-66.
    12. Eric Beh & Luigi D’Ambra, 2009. "Some Interpretative Tools for Non-Symmetrical Correspondence Analysis," Journal of Classification, Springer;The Classification Society, vol. 26(1), pages 55-76, April.
    13. Pilar García Gómez & Ángel López Nicolás, 2005. "Socio-economic inequalities in health in Catalonia," Hacienda Pública Española / Review of Public Economics, IEF, vol. 175(4), pages 103-121, december.
    14. Michael Greenacre, 2011. "A Simple Permutation Test for Clusteredness," Working Papers 555, Barcelona School of Economics.
    15. David Bholat & Stephen Hans & Pedro Santos & Cheryl Schonhardt-Bailey, 2015. "Text mining for central banks," Handbooks, Centre for Central Banking Studies, Bank of England, number 33, April.
    16. Michael Greenacre, 2012. "Fuzzy coding in constrained ordinations," Economics Working Papers 1325, Department of Economics and Business, Universitat Pompeu Fabra.
    17. Michael Greenacre, 2016. "Selection and statistical analysis of compositional ratios," Economics Working Papers 1551, Department of Economics and Business, Universitat Pompeu Fabra.
    18. Rémi Bazillier & Nicolas Sirven, 2006. "Les normes fondamentales du travail contribuent-elles à réduire les inégalités ?," Revue Française d'Économie, Programme National Persée, vol. 21(2), pages 111-146.
    19. Giovanni C. Porzio & Giancarlo Ragozini & Domenico Vistocco, 2008. "On the use of archetypes as benchmarks," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 419-437, September.
    20. Alfonso Gambardella & Walter Garcia Fontes, 1996. "European research funding and regional technological capabilities: Network composition analysis," Economics Working Papers 174, Department of Economics and Business, Universitat Pompeu Fabra.

    More about this item

    Keywords

    Biplot; bootstrapping; canonical correlation; chi-square distance; confidence; ellipse; contingency table; convex hull; correspondence analysis; inertia; randomization test; rotation; singular value;
    All these keywords.

    JEL classification:

    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.upf.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.