IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2005s-26.html
   My bibliography  Save this paper

Finite-Sample Simulation-Based Inference in VAR Models with Applications to Order Selection and Causality Testing

Author

Listed:
  • Jean-Marie Dufour
  • Tarek Jouini

Abstract

Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, especially when the number of lags or the number of equations is not small, we propose a general simulation-based technique that allows one to control completely the level of tests in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour (2005, Journal of Econometrics)] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to quarterly and monthly VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the period 1965-1996. Les tests statistiques sur des modèles autorégressifs multivariés (VAR) sont habituellement basés sur des approximations de grands échantillons, qui utilisent une loi asymptotique ou une technique de bootstrap. Après avoir montré que ces méthodes peuvent être très peu fiables, même avec des échantillons de taille assez grande, particulièrement lorsque le nombre des retards ou le nombre d'équations augmentent, nous proposons une technique générale basée sur la simulation qui permet de contrôler parfaitement le niveau des tests dans les modèles VAR paramétriques. En particulier, nous montrons que la technique des tests de Monte Carlo maximisés [Dufour (2005, Journal of Econometrics)] fournit des tests exacts pour de tels modèles, que ceux-ci soient stationnaires ou intégrés. Sélectionner l'ordre du modèle ainsi que tester la causalité au sens de Granger sont étudiés comme problèmes particuliers dans ce cadre. La technique proposée est appliquée à des modèles VAR, trimestriels et mensuels, de l'économie américaine, comprenant le revenu, la monnaie, un taux d'intérêt et le niveau des prix, sur la période 1965-1996.

Suggested Citation

  • Jean-Marie Dufour & Tarek Jouini, 2005. "Finite-Sample Simulation-Based Inference in VAR Models with Applications to Order Selection and Causality Testing," CIRANO Working Papers 2005s-26, CIRANO.
  • Handle: RePEc:cir:cirwor:2005s-26
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2005s-26.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Toda, Hiro Y & Phillips, Peter C B, 1993. "Vector Autoregressions and Causality," Econometrica, Econometric Society, vol. 61(6), pages 1367-1393, November.
    2. Faust, Jon, 1996. "Near Observational Equivalence and Theoretical size Problems with Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 12(4), pages 724-731, October.
    3. Gourieroux,Christian & Monfort,Alain, 1997. "Time Series and Dynamic Models," Cambridge Books, Cambridge University Press, number 9780521423083.
    4. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    5. Caner, M. & Kilian, L., 2001. "Size distortions of tests of the null hypothesis of stationarity: evidence and implications for the PPP debate," Journal of International Money and Finance, Elsevier, vol. 20(5), pages 639-657, October.
    6. Dufour, Jean-Marie & Pelletier, Denis & Renault, Eric, 2006. "Short run and long run causality in time series: inference," Journal of Econometrics, Elsevier, vol. 132(2), pages 337-362, June.
    7. Jon Faust, 1996. "Theoretical confidence level problems with confidence intervals for the spectrum of a time series," International Finance Discussion Papers 575, Board of Governors of the Federal Reserve System (U.S.).
    8. Dufour, Jean-Marie & Khalaf, Lynda, 2002. "Simulation based finite and large sample tests in multivariate regressions," Journal of Econometrics, Elsevier, vol. 111(2), pages 303-322, December.
    9. Inoue, Atsushi & Kilian, Lutz, 2003. "The Continuity Of The Limit Distribution In The Parameter Of Interest Is Not Essential For The Validity Of The Bootstrap," Econometric Theory, Cambridge University Press, vol. 19(6), pages 944-961, December.
    10. Atsushi Inoue & Lutz Kilian, 2002. "Bootstrapping Smooth Functions of Slope Parameters and Innovation Variances in VAR (∞) Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 43(2), pages 309-332, May.
    11. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    12. Ben S. Bernanke & Ilian Mihov, 1998. "Measuring Monetary Policy," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(3), pages 869-902.
    13. Park, Joon Y. & Phillips, Peter C.B., 1989. "Statistical Inference in Regressions with Integrated Processes: Part 2," Econometric Theory, Cambridge University Press, vol. 5(1), pages 95-131, April.
    14. Jean‐Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(4), pages 767-808, November.
    15. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    16. Dolado, Juan J. & Lütkepohl, Helmut, 1994. "Making Wald Tests Work for Cointegrated Var Systems," SFB 373 Discussion Papers 1994,44, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    17. Blough, Stephen R, 1992. "The Relationship between Power and Level for Generic Unit Root Tests in Finite Samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(3), pages 295-308, July-Sept.
    18. Jean-Marie Dufour & Eric Renault, 1998. "Short Run and Long Run Causality in Time Series: Theory," Econometrica, Econometric Society, vol. 66(5), pages 1099-1126, September.
    19. Yamamoto, Taku, 1996. "A Simple Approach to the Statistical Inference in Linear Time Series Models Which May Have Some Unit Roots," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 37(2), pages 87-100, December.
    20. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    21. Benedikt M. Poetscher, 2002. "Lower Risk Bounds and Properties of Confidence Sets for Ill-Posed Estimation Problems with Applications to Spectral Density and Persistence Estimation, Unit Roots, and Estimation of Long Memory Parame," Econometrica, Econometric Society, vol. 70(3), pages 1035-1065, May.
    22. Jeremy Berkowitz & Lutz Kilian, 2000. "Recent developments in bootstrapping time series," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 1-48.
    23. Hiro Y. Toda & Peter C.B. Phillips, 1991. "Vector Autoregression and Causality: A Theoretical Overview and Simulation Study," Cowles Foundation Discussion Papers 1001, Cowles Foundation for Research in Economics, Yale University.
    24. Hansen, Peter Reinhard & Johansen, Soren, 1998. "Workbook on Cointegration," OUP Catalogue, Oxford University Press, number 9780198776079.
    25. Yamada, Hiroshi & Toda, Hiro Y., 1998. "Inference in possibly integrated vector autoregressive models: some finite sample evidence," Journal of Econometrics, Elsevier, vol. 86(1), pages 55-95, June.
    26. Atsushi Inoue & Lutz Kilian, 2002. "Bootstrapping Autoregressive Processes with Possible Unit Roots," Econometrica, Econometric Society, vol. 70(1), pages 377-391, January.
    27. Donald W. K. Andrews, 2000. "Inconsistency of the Bootstrap when a Parameter Is on the Boundary of the Parameter Space," Econometrica, Econometric Society, vol. 68(2), pages 399-406, March.
    28. repec:cup:etheor:v:9:y:1993:i:2:p:263-82 is not listed on IDEAS
    29. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    30. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    31. Eiji Kurozumi & Taku Yamamoto, 2000. "Modified lag augmented vector autoregressions," Econometric Reviews, Taylor & Francis Journals, vol. 19(2), pages 207-231.
    32. Cochrane, John H., 1991. "A critique of the application of unit root tests," Journal of Economic Dynamics and Control, Elsevier, vol. 15(2), pages 275-284, April.
    33. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    34. Kilian, L. & Demiroglu, U., 1997. "Residual-Based Bootstrap Tests for Normality in Autoregressions," Papers 97-14, Michigan - Center for Research on Economic & Social Theory.
    35. Alexander Benkwitz & Michael Neumann & Helmut Lutekpohl, 2000. "Problems related to confidence intervals for impulse responses of autoregressive processes," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 69-103.
    36. Lutz Kilian, 1998. "Confidence intervals for impulse responses under departures from normality," Econometric Reviews, Taylor & Francis Journals, vol. 17(1), pages 1-29.
    37. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    38. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    39. Sims, Christopher A, 1971. "Discrete Approximations to Continuous Time Distributed Lags in Econometrics," Econometrica, Econometric Society, vol. 39(3), pages 545-563, May.
    40. Paparoditis, Efstathios, 1996. "Bootstrapping Autoregressive and Moving Average Parameter Estimates of Infinite Order Vector Autoregressive Processes," Journal of Multivariate Analysis, Elsevier, vol. 57(2), pages 277-296, May.
    41. Choi, In, 1993. "Asymptotic Normality of the Least-Squares Estimates for Higher Order Autoregressive Integrated Processes with Some Applications," Econometric Theory, Cambridge University Press, vol. 9(2), pages 263-282, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Sadoon, Majid M., 2019. "Testing subspace Granger causality," Econometrics and Statistics, Elsevier, vol. 9(C), pages 42-61.
    2. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    3. Jonathan B. Hill, 2005. "Causation Delays and Causal Neutralization up to Three Steps Ahead: The Money-Output Relationship Revisited," Econometrics 0503016, University Library of Munich, Germany, revised 23 Mar 2005.
    4. Jonathan B. Hill, 2007. "Efficient tests of long-run causation in trivariate VAR processes with a rolling window study of the money-income relationship," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(4), pages 747-765.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dufour, Jean-Marie & Jouini, Tarek, 2006. "Finite-sample simulation-based inference in VAR models with application to Granger causality testing," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 229-254.
    2. Dufour, Jean-Marie & Pelletier, Denis & Renault, Eric, 2006. "Short run and long run causality in time series: inference," Journal of Econometrics, Elsevier, vol. 132(2), pages 337-362, June.
    3. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    4. Inoue, Atsushi & Kilian, Lutz, 2020. "The uniform validity of impulse response inference in autoregressions," Journal of Econometrics, Elsevier, vol. 215(2), pages 450-472.
    5. Dufour, Jean-Marie & Taamouti, Abderrahim, 2010. "Short and long run causality measures: Theory and inference," Journal of Econometrics, Elsevier, vol. 154(1), pages 42-58, January.
    6. Judith A. Clarke & Mukesh Ralhan, 2005. "Direct and Indirect Causality Between Exports and Economic Output for Bangladesh and Sri Lanka: Horizon Matters," Econometrics Working Papers 0512, Department of Economics, University of Victoria.
    7. Bauer, Dietmar & Maynard, Alex, 2012. "Persistence-robust surplus-lag Granger causality testing," Journal of Econometrics, Elsevier, vol. 169(2), pages 293-300.
    8. Al-Sadoon, Majid M., 2019. "Testing subspace Granger causality," Econometrics and Statistics, Elsevier, vol. 9(C), pages 42-61.
    9. Jonathan B. Hill, 2007. "Efficient tests of long-run causation in trivariate VAR processes with a rolling window study of the money-income relationship," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(4), pages 747-765.
    10. David Greasley & Les Oxley, 2010. "Cliometrics And Time Series Econometrics: Some Theory And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 24(5), pages 970-1042, December.
    11. Khalaf, Lynda & Urga, Giovanni, 2014. "Identification robust inference in cointegrating regressions," Journal of Econometrics, Elsevier, vol. 182(2), pages 385-396.
    12. Judith A. Clarke & Sadaf Mirza, 2003. "Some Finite Sample Results On Testing For Granger Noncausality," Econometrics Working Papers 0305, Department of Economics, University of Victoria.
    13. Helmut Luetkepohl, 2007. "Econometric Analysis with Vector Autoregressive Models," Economics Working Papers ECO2007/11, European University Institute.
    14. Kilian, Lutz & Kim, Yun Jung, 2009. "Do Local Projections Solve the Bias Problem in Impulse Response Inference?," CEPR Discussion Papers 7266, C.E.P.R. Discussion Papers.
    15. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871, September.
    16. Emirmahmutoglu, Furkan & Kose, Nezir, 2011. "Testing for Granger causality in heterogeneous mixed panels," Economic Modelling, Elsevier, vol. 28(3), pages 870-876, May.
    17. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
    18. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, June.
    19. Lütkepohl, Helmut, 1999. "Vector autoregressive analysis," SFB 373 Discussion Papers 1999,31, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    20. DUFOUR, Jean-Marie, 2001. "Logique et tests d'hypotheses: reflexions sur les problemes mal poses en econometrie," Cahiers de recherche 2001-15, Universite de Montreal, Departement de sciences economiques.

    More about this item

    Keywords

    bootstrap; exact test; Granger causality; inflation; interest rate; macroeconomics; maximized Monte Carlo test; money and income; Monte Carlo test; nonstationary model; order selection; VAR; vector autoregression; autorégression vectorielle; bootstrap; causalité au sens de Granger; inflation; macroéconomie; modèle non-stationnaire; monnaie et revenu; sélection de l'ordre; taux d'intérêt; test exact; test de Monte Carlo; test de Monte Carlo maximisé; VAR;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • E4 - Macroeconomics and Monetary Economics - - Money and Interest Rates
    • E5 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2005s-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.