IDEAS home Printed from https://ideas.repec.org/p/ucr/wpaper/201923.html
   My bibliography  Save this paper

Information Theoretic Estimation of Econometric Functions

Author

Listed:
  • Millie Yi Mao

    (Azusa Pacific University)

  • Aman Ullah

    (Department of Economics, University of California Riverside)

Abstract

This chapter introduces an information theoretic approach to specify econometric functions as an alternative to avoid parametric assumptions. We investigate the performances of the information theoretic method in estimating the regression (conditional mean) and response (derivative) functions. We have demonstrated that they are easy to implement, and are advantageous over parametric models and nonparametric kernel techniques.

Suggested Citation

  • Millie Yi Mao & Aman Ullah, 2019. "Information Theoretic Estimation of Econometric Functions," Working Papers 201923, University of California at Riverside, Department of Economics.
  • Handle: RePEc:ucr:wpaper:201923
    as

    Download full text from publisher

    File URL: https://economics.ucr.edu/repec/ucr/wpaper/201923.pdf
    File Function: First version, 2019
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zellner, Arnold & Highfield, Richard A., 1988. "Calculation of maximum entropy distributions and approximation of marginalposterior distributions," Journal of Econometrics, Elsevier, vol. 37(2), pages 195-209, February.
    2. Wu, Ximing, 2003. "Calculation of maximum entropy densities with application to income distribution," Journal of Econometrics, Elsevier, vol. 115(2), pages 347-354, August.
    3. Golan, Amos & Judge, George G. & Miller, Douglas, 1996. "Maximum Entropy Econometrics," Staff General Research Papers Archive 1488, Iowa State University, Department of Economics.
    4. Henderson,Daniel J. & Parmeter,Christopher F., 2015. "Applied Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9781107010253, January.
    5. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stöckel, Jannis & Bom, Judith, 2022. "Revisiting longer-term health effects of informal caregiving: Evidence from the UK," The Journal of the Economics of Ageing, Elsevier, vol. 21(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Ximing & Perloff, Jeffrey M., 2007. "Information-Theoretic Deconvolution Approximation of Treatment Effect Distribution," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt9vd036zx, Department of Agricultural & Resource Economics, UC Berkeley.
    2. Ba Chu & Stephen Satchell, 2016. "Recovering the Most Entropic Copulas from Preliminary Knowledge of Dependence," Econometrics, MDPI, vol. 4(2), pages 1-21, March.
    3. Thanasis Stengos & Ximing Wu, 2010. "Information-Theoretic Distribution Test with Application to Normality," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 307-329.
    4. Wu, Ximing & Perloff, Jeffrey M., 2005. "GMM Estimation of a Maximum Distribution With Interval Data," Institute for Research on Labor and Employment, Working Paper Series qt7jf5w1ht, Institute of Industrial Relations, UC Berkeley.
    5. Stephen Satchell & Susan Thorp & Oliver Williams, 2012. "Estimating Consumption Plans for Recursive Utility by Maximum Entropy Methods," Research Paper Series 300, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Wu, Ximing, 2010. "Exponential Series Estimator of multivariate densities," Journal of Econometrics, Elsevier, vol. 156(2), pages 354-366, June.
    7. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    8. Christopher F. Parmeter & Hung-Jen Wang & Subal C. Kumbhakar, 2017. "Nonparametric estimation of the determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 47(3), pages 205-221, June.
    9. Wu, Ximing & Perloff, Jeffrey M., 2004. "China's Income Distribution Over Time: Reasons for Rising Inequality," Institute for Research on Labor and Employment, Working Paper Series qt9jw2v939, Institute of Industrial Relations, UC Berkeley.
    10. Carol Alexander & Jose Maria Sarabia, 2010. "Endogenizing Model Risk to Quantile Estimates," ICMA Centre Discussion Papers in Finance icma-dp2010-07, Henley Business School, University of Reading.
    11. Das, Sonali & Racine, Jeffrey S., 2018. "Interactive nonparametric analysis of nonlinear systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 290-301.
    12. Minviel, Jean Joseph & De Witte, Kristof, 2017. "The influence of public subsidies on farm technical efficiency: A robust conditional nonparametric approach," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1112-1120.
    13. Yiguo Sun & Thanasis Stengos, 2008. "The absolute health income hypothesis revisited: a semiparametric quantile regression approach," Empirical Economics, Springer, vol. 35(2), pages 395-412, September.
    14. Daniel J. Henderson & Léopold Simar & Le Wang, 2017. "The three s of public schools: irrelevant inputs, insufficient resources and inefficiency," Applied Economics, Taylor & Francis Journals, vol. 49(12), pages 1164-1184, March.
    15. Mariam Camarero & Jesús Peiró-Palomino & Cecilio Tamarit, 2017. "External imbalances and growth," Working Papers 2017/02, Economics Department, Universitat Jaume I, Castellón (Spain).
    16. Christopher F. Parmeter & Jeffrey S. Racine, 2018. "Nonparametric Estimation and Inference for Panel Data Models," Department of Economics Working Papers 2018-02, McMaster University.
    17. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    18. Rockinger, Michael & Jondeau, Eric, 2002. "Entropy densities with an application to autoregressive conditional skewness and kurtosis," Journal of Econometrics, Elsevier, vol. 106(1), pages 119-142, January.
    19. Muhammad Shoaib & Imran Siddiqui & Shafiqur Rehman & Saif Ur Rehman & Shamim Khan & Aref Lashin, 2016. "Comparison of Wind Energy Generation Using the Maximum Entropy Principle and the Weibull Distribution Function," Energies, MDPI, vol. 9(10), pages 1-18, October.
    20. Bao, Xing & Tang, Ou & Ji, Jianhua, 2008. "Applying the minimum relative entropy method for bimodal distribution in a remanufacturing system," International Journal of Production Economics, Elsevier, vol. 113(2), pages 969-979, June.

    More about this item

    Keywords

    Information theory; Maximum entropy distributions; Econometric functions; Conditional mean;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucr:wpaper:201923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kelvin Mac (email available below). General contact details of provider: https://edirc.repec.org/data/deucrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.