IDEAS home Printed from https://ideas.repec.org/p/cdl/indrel/qt7jf5w1ht.html
   My bibliography  Save this paper

GMM Estimation of a Maximum Distribution With Interval Data

Author

Listed:
  • Wu, Ximing
  • Perloff, Jeffrey M.

Abstract

We develop a GMM estimator for the distribution of a variable where summary statistics are available only for intervals of the random variable. Without individual data, once cannot calculate the weighting matrix for the GMM estimator. Instead, we propose a simulated weighting matrix based on a first-step consistent estimate. When the functional form of the underlying distribution is unknown, we estimate it using a simple yet flexible maximum entropy density. our Monte Carlo simulations show that the proposed maximum entropy density is able to approximate various distributions extremely well. The two-step GMM estimator with a simulated weighting matrix improves the efficiency of the one-step GMM considerably. We use this method to estimate the U.S. income distribution and compare these results with those based on the underlyign raw income data.

Suggested Citation

  • Wu, Ximing & Perloff, Jeffrey M., 2005. "GMM Estimation of a Maximum Distribution With Interval Data," Institute for Research on Labor and Employment, Working Paper Series qt7jf5w1ht, Institute of Industrial Relations, UC Berkeley.
  • Handle: RePEc:cdl:indrel:qt7jf5w1ht
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/7jf5w1ht.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Golan, Amos & Judge, George & Perloff, Jeffrey M, 1996. "Estimating the Size Distribution of Firms Using Government Summary Statistics," Journal of Industrial Economics, Wiley Blackwell, vol. 44(1), pages 69-80, March.
    2. Jeffrey M. Perloff & Ximing Wu, 2004. "China's Income Distribution and Inequality," Econometric Society 2004 North American Summer Meetings 316, Econometric Society.
    3. Zellner, Arnold & Highfield, Richard A., 1988. "Calculation of maximum entropy distributions and approximation of marginalposterior distributions," Journal of Econometrics, Elsevier, vol. 37(2), pages 195-209, February.
    4. Ximing Wu & Thanasis Stengos, 2005. "Partially adaptive estimation via the maximum entropy densities," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 352-366, December.
    5. Dalén, Jörgen, 1987. "Algebraic bounds on standardized sample moments," Statistics & Probability Letters, Elsevier, vol. 5(5), pages 329-331, August.
    6. Wu, Ximing & Perloff, Jeffrey M., 2004. "China's Income Distribution Over Time: Reasons for Rising Inequality," Institute for Research on Labor and Employment, Working Paper Series qt9jw2v939, Institute of Industrial Relations, UC Berkeley.
    7. Wu, Ximing, 2003. "Calculation of maximum entropy densities with application to income distribution," Journal of Econometrics, Elsevier, vol. 115(2), pages 347-354, August.
    8. Golan, Amos & Judge, George G. & Miller, Douglas, 1996. "Maximum Entropy Econometrics," Staff General Research Papers Archive 1488, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piao Wang & Shahid Hussain Gurmani & Zhifu Tao & Jinpei Liu & Huayou Chen, 2024. "Interval time series forecasting: A systematic literature review," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 249-285, March.
    2. Lee, Jongchul, 2013. "A provincial perspective on income inequality in urban China and the role of property and business income," China Economic Review, Elsevier, vol. 26(C), pages 140-150.
    3. Sun, Yuying & Zhang, Xinyu & Wan, Alan T.K. & Wang, Shouyang, 2022. "Model averaging for interval-valued data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 772-784.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thanasis Stengos & Ximing Wu, 2010. "Information-Theoretic Distribution Test with Application to Normality," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 307-329.
    2. Theodore Panagiotidis & Georgios Papapanagiotou, 2024. "A note on the determinants of NFTs returns," Working Paper series 24-07, Rimini Centre for Economic Analysis.
    3. Wu, Ximing & Perloff, Jeffrey M., 2007. "Information-Theoretic Deconvolution Approximation of Treatment Effect Distribution," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt6bm6n30x, Department of Agricultural & Resource Economics, UC Berkeley.
    4. Yiguo Sun & Thanasis Stengos, 2008. "The absolute health income hypothesis revisited: a semiparametric quantile regression approach," Empirical Economics, Springer, vol. 35(2), pages 395-412, September.
    5. Dong, Xiao-Ying & Hao, Yu, 2018. "Would income inequality affect electricity consumption? Evidence from China," Energy, Elsevier, vol. 142(C), pages 215-227.
    6. Francesco Schettino & Alberto Gabriele, 2008. "Child malnutrition and mortality in China and Vietnam in a comparative perspective," Economic Change and Restructuring, Springer, vol. 41(1), pages 29-59, March.
    7. Mitra, Pradeep & Yemtsov, Ruslan, 2006. "Increasing inequality in transition economies : is there more to come?," Policy Research Working Paper Series 4007, The World Bank.
    8. James K. Galbraith & Ludmila Krytynskaia & Qifei Wang, 2004. "The Experience of Rising Inequality in Russia and China during the Transition," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 1(1), pages 87-106, June.
    9. Stephen Satchell & Susan Thorp & Oliver Williams, 2012. "Estimating Consumption Plans for Recursive Utility by Maximum Entropy Methods," Research Paper Series 300, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Alberto, Gabriele & Schettino, Francesco, 2006. "Child Mortality In China And Vietnam In A Comparative Perspective," MPRA Paper 3987, University Library of Munich, Germany, revised Dec 2006.
    11. Ba Chu & Stephen Satchell, 2016. "Recovering the Most Entropic Copulas from Preliminary Knowledge of Dependence," Econometrics, MDPI, vol. 4(2), pages 1-21, March.
    12. Millie Yi Mao & Aman Ullah, 2019. "Information Theoretic Estimation of Econometric Functions," Working Papers 201923, University of California at Riverside, Department of Economics.
    13. Tack, Jesse, 2013. "A Nested Test for Common Yield Distributions with Applications to U.S. Corn," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 38(1), pages 1-14, April.
    14. Wu, Ximing & Perloff, Jeffrey M., 2004. "China's Income Distribution Over Time: Reasons for Rising Inequality," Institute for Research on Labor and Employment, Working Paper Series qt9jw2v939, Institute of Industrial Relations, UC Berkeley.
    15. Msangi, Siwa & Howitt, Richard E., 2006. "Estimating Disaggregate Production Functions: An Application to Northern Mexico," 2006 Annual meeting, July 23-26, Long Beach, CA 21080, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Gu, Xinhua & Tam, Pui Sun, 2013. "The saving–growth–inequality triangle in China," Economic Modelling, Elsevier, vol. 33(C), pages 850-857.
    17. Broich, T. & Szirmai, A., 2014. "China's economic embrace of Africa: An international comparative perspective," MERIT Working Papers 2014-049, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    18. Coes, Donald V., 2008. "Income distribution trends in Brazil and China: Evaluating absolute and relative economic growth," The Quarterly Review of Economics and Finance, Elsevier, vol. 48(2), pages 359-369, May.
    19. Jenny Farmer & Donald Jacobs, 2018. "High throughput nonparametric probability density estimation," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-29, May.
    20. Domenico Di Gangi & Fabrizio Lillo & Davide Pirino, 2015. "Assessing systemic risk due to fire sales spillover through maximum entropy network reconstruction," Papers 1509.00607, arXiv.org, revised Jul 2018.

    More about this item

    Keywords

    Income Distribution;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:indrel:qt7jf5w1ht. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/irucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.