IDEAS home Printed from https://ideas.repec.org/p/ucm/doicae/0604.html
   My bibliography  Save this paper

Valor en Riesgo en carteras de renta fija: una comparación entre modelos empíricos de la estructura temporal

Author

Listed:
  • Pilar Abad

    (Universidad de Barcelona. Departamento de Econometría y Estadística.)

  • Sonia Benito

    (Universidad Nacional de Educación a Distancia (UNED). Departamento de Análisis Económico II)

Abstract

En este trabajo se compara la precisión de diferentes medidas de Valor en Riesgo (VaR) en carteras de renta fija calculadas a partir de diferentes modelos empíricos multifactoriales de la estructura temporal de los tipos de interés (ETTI). Los modelos incluidos en la comparativa son tres: (1) modelos de regresión, (2) componentes principales y (3) paramétricos. Adicionalmente, se incluye el sistema de cartografía que utiliza Riskmetrics. Dado que el cálculo de las medidas VaR con dichos modelos requiere el uso de una medida de volatilidad, en este trabajo se utilizan tres medidas distintas: medias móviles exponenciales, medias móviles equiponderadas y modelos GARCH. Por consiguiente, la comparación de la precisión de las medidas VaR tiene dos dimensiones: el modelo multifactorial y la medida de volatilidad. Respecto a los modelos multifactoriales, la evidencia presentada indica que el sistema de mapping o cartografía es el modelo más preciso cuando se calculan medidas VaR (5%). Por el contrario, a un nivel de confianza del 1% el modelo paramétrico (modelo de Nelson y Siegel) es el que genera medidas VaR más precisas. Respecto a las medidas de volatilidad los resultados indican que en general no hay una medida que funcione sistemáticamente mejor que el resto en todos los modelos. Salvo alguna excepción, los resultados obtenidos son independientes del horizonte para el cual se calcula el VaR, ya sea uno o diez días.

Suggested Citation

  • Pilar Abad & Sonia Benito, 2006. "Valor en Riesgo en carteras de renta fija: una comparación entre modelos empíricos de la estructura temporal," Documentos de Trabajo del ICAE 0604, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  • Handle: RePEc:ucm:doicae:0604
    as

    Download full text from publisher

    File URL: https://eprints.ucm.es/id/eprint/7912/1/0604.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chambers, Donald R. & Carleton, Willard T. & McEnally, Richard W., 1988. "Immunizing Default-Free Bond Portfolios with a Duration Vector," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(1), pages 89-104, March.
    2. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    3. Bierwag, G. O., 1977. "Immunization, Duration, and the Term Structure of Interest Rates," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(5), pages 725-742, December.
    4. Eliseo Navarro & Juan M. Nave, 2001. "The structure of spot rates and immunization: Some further results," Spanish Economic Review, Springer;Spanish Economic Association, vol. 3(4), pages 273-294.
    5. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    6. Elton, Edwin J & Gruber, Martin J & Michaely, Roni, 1990. "The Structure of Spot Rates and Immunization," Journal of Finance, American Finance Association, vol. 45(2), pages 629-642, June.
    7. Bierwag, G O & Kaufman, George G, 1977. "Coping with the Risk of Interest-Rate Fluctuations: A Note," The Journal of Business, University of Chicago Press, vol. 50(3), pages 364-370, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soto, Gloria M., 2004. "Duration models and IRR management: A question of dimensions?," Journal of Banking & Finance, Elsevier, vol. 28(5), pages 1089-1110, May.
    2. Luís Oliveira & João Vidal Nunes & Luís Malcato, 2014. "The performance of deterministic and stochastic interest rate risk measures:," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 13(3), pages 141-165, December.
    3. Jorge Miguel Ventura Bravo & Carlos Manuel Pereira da Silva, 2005. "Immunization Using a Parametric Model of the Term Structure," Economics Working Papers 19_2005, University of Évora, Department of Economics (Portugal).
    4. Cláudia Simões & Luís Oliveira & Jorge M. Bravo, 2021. "Immunization Strategies for Funding Multiple Inflation-Linked Retirement Income Benefits," Risks, MDPI, vol. 9(4), pages 1-28, March.
    5. Almeida, Caio & Lund, Bruno, 2014. "Immunization of Fixed-Income Portfolios Using an Exponential Parametric Model," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 34(2), November.
    6. Ventura Bravo, Jorge Miguel & Pereira da Silva, Carlos Manuel, 2006. "Immunization using a stochastic-process independent multi-factor model: The Portuguese experience," Journal of Banking & Finance, Elsevier, vol. 30(1), pages 133-156, January.
    7. George G. Kaufman, 1980. "Duration, Planning Period, And Tests Of The Capital Asset Pricing Model," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 3(1), pages 1-9, March.
    8. Edward J. Elton & Martin J. Gruber & Deepak Agrawal & Christopher Mann, 1999. "Explaining the Rate Spread on Corporate Bonds," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-082, New York University, Leonard N. Stern School of Business-.
    9. Makushkin, Mikhail & Lapshin, Victor, 2023. "Dynamic Nelson–Siegel model for market risk estimation of bonds: Practical implementation," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 69, pages 5-27.
    10. Alejandro Bernales & Diether W. Beuermann & Gonzalo Cortazar, 2014. "Thinly traded securities and risk management," Estudios de Economia, University of Chile, Department of Economics, vol. 41(1 Year 20), pages 5-48, June.
    11. Michael Theobald & Peter Yallup, 2010. "Liability-driven investment: multiple liabilities and the question of the number of moments," The European Journal of Finance, Taylor & Francis Journals, vol. 16(5), pages 413-435.
    12. Balbas, Alejandro & Ibanez, Alfredo & Lopez, Susana, 2002. "Dispersion measures as immunization risk measures," Journal of Banking & Finance, Elsevier, vol. 26(6), pages 1229-1244, June.
    13. Francis X. Diebold & Lei Ji & Canlin Li, 2006. "A Three-Factor Yield Curve Model: Non-Affine Structure, Systematic Risk Sources and Generalized Duration," Chapters, in: Lawrence R. Klein (ed.), Long-run Growth and Short-run Stabilization, chapter 9, Edward Elgar Publishing.
    14. Lesseig, Vance P. & Stock, Duane, 2000. "Impact of Correlation of Asset Value and Interest Rates upon Duration and Convexity of Risky Debt," Journal of Business Research, Elsevier, vol. 49(3), pages 289-301, September.
    15. Niels S. Hansen & Asger Lunde, 2013. "Analyzing Oil Futures with a Dynamic Nelson-Siegel Model," CREATES Research Papers 2013-36, Department of Economics and Business Economics, Aarhus University.
    16. Tu, Anthony H. & Chen, Cathy Yi-Hsuan, 2018. "A factor-based approach of bond portfolio value-at-risk: The informational roles of macroeconomic and financial stress factors," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 243-268.
    17. Marek Kałuszka & Alina Kondratiuk-Janyska, 2004. "On Duration-Dispersion Strategies for Portfolio Immunization," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Władysław Milo & Piotr Wdowiński (ed.), Acta Universitatis Lodziensis. Folia Oeconomica nr 177/2004 - Forecasting and Decision-Making in Financial Markets, edition 1, volume 127, chapter 12, pages 191-202, University of Lodz.
    18. Barber, Joel R. & Copper, Mark L., 1998. "A minimax risk strategy for portfolio immunization," Insurance: Mathematics and Economics, Elsevier, vol. 23(2), pages 173-177, November.
    19. Soto, Gloria M., 2001. "Immunization derived from a polynomial duration vector in the Spanish bond market," Journal of Banking & Finance, Elsevier, vol. 25(6), pages 1037-1057, June.
    20. Nawalkha, Sanjay K. & Soto, Gloria M. & Zhang, Jun, 2003. "Generalized M-vector models for hedging interest rate risk," Journal of Banking & Finance, Elsevier, vol. 27(8), pages 1581-1604, August.

    More about this item

    Keywords

    Value at Risk (VaR); Modelos factoriales; Gestión de riesgo.;
    All these keywords.

    JEL classification:

    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucm:doicae:0604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Águeda González Abad (email available below). General contact details of provider: https://edirc.repec.org/data/feucmes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.