IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v26y2002i6p1229-1244.html
   My bibliography  Save this article

Dispersion measures as immunization risk measures

Author

Listed:
  • Balbas, Alejandro
  • Ibanez, Alfredo
  • Lopez, Susana

Abstract

No abstract is available for this item.

Suggested Citation

  • Balbas, Alejandro & Ibanez, Alfredo & Lopez, Susana, 2002. "Dispersion measures as immunization risk measures," Journal of Banking & Finance, Elsevier, vol. 26(6), pages 1229-1244, June.
  • Handle: RePEc:eee:jbfina:v:26:y:2002:i:6:p:1229-1244
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-4266(01)00168-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fong, H Gifford & Vasicek, Oldrich A, 1984. "A Risk Minimizing Strategy for Portfolio Immunization," Journal of Finance, American Finance Association, vol. 39(5), pages 1541-1546, December.
    2. Bierwag, G. O., 1977. "Immunization, Duration, and the Term Structure of Interest Rates," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(5), pages 725-742, December.
    3. Balbas, Alejandro & Ibanez, Alfredo, 1998. "When can you immunize a bond portfolio?," Journal of Banking & Finance, Elsevier, vol. 22(12), pages 1571-1595, December.
    4. Fisher, Lawrence & Weil, Roman L, 1971. "Coping with the Risk of Interest-Rate Fluctuations: Returns to Bondholders from Naive and Optimal Strategies," The Journal of Business, University of Chicago Press, vol. 44(4), pages 408-431, October.
    5. Chambers, Donald R. & Carleton, Willard T. & McEnally, Richard W., 1988. "Immunizing Default-Free Bond Portfolios with a Duration Vector," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(1), pages 89-104, March.
    6. Roger J. Bowden, 1997. "Generalising Interest Rate Duration with Directional Derivatives: Direction X and Applications," Management Science, INFORMS, vol. 43(5), pages 586-595, May.
    7. Bierwag, Gerald O. & Fooladi, Iraj & Roberts, Gordon S., 1993. "Designing an immunized portfolio: Is M-squared the key?," Journal of Banking & Finance, Elsevier, vol. 17(6), pages 1147-1170, December.
    8. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1979. "Duration and the Measurement of Basis Risk," The Journal of Business, University of Chicago Press, vol. 52(1), pages 51-61, January.
    9. Prisman, Eliezer Z. & Shores, Marilyn R., 1988. "Duration measures for specific term structure estimations and applications to bond portfolio immunization," Journal of Banking & Finance, Elsevier, vol. 12(3), pages 493-504, September.
    10. Eliseo Navarro & Juan M. Nave, 1997. "A two-factor duration model for interest rate risk management," Investigaciones Economicas, Fundación SEPI, vol. 21(1), pages 55-74, January.
    11. Barber, Joel R. & Copper, Mark L., 1998. "A minimax risk strategy for portfolio immunization," Insurance: Mathematics and Economics, Elsevier, vol. 23(2), pages 173-177, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cláudia Simões & Luís Oliveira & Jorge M. Bravo, 2021. "Immunization Strategies for Funding Multiple Inflation-Linked Retirement Income Benefits," Risks, MDPI, vol. 9(4), pages 1-28, March.
    2. Ventura Bravo, Jorge Miguel & Pereira da Silva, Carlos Manuel, 2006. "Immunization using a stochastic-process independent multi-factor model: The Portuguese experience," Journal of Banking & Finance, Elsevier, vol. 30(1), pages 133-156, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cláudia Simões & Luís Oliveira & Jorge M. Bravo, 2021. "Immunization Strategies for Funding Multiple Inflation-Linked Retirement Income Benefits," Risks, MDPI, vol. 9(4), pages 1-28, March.
    2. Ventura Bravo, Jorge Miguel & Pereira da Silva, Carlos Manuel, 2006. "Immunization using a stochastic-process independent multi-factor model: The Portuguese experience," Journal of Banking & Finance, Elsevier, vol. 30(1), pages 133-156, January.
    3. Balbas, Alejandro & Ibanez, Alfredo, 1998. "When can you immunize a bond portfolio?," Journal of Banking & Finance, Elsevier, vol. 22(12), pages 1571-1595, December.
    4. Soto, Gloria M., 2001. "Immunization derived from a polynomial duration vector in the Spanish bond market," Journal of Banking & Finance, Elsevier, vol. 25(6), pages 1037-1057, June.
    5. Luís Oliveira & João Vidal Nunes & Luís Malcato, 2014. "The performance of deterministic and stochastic interest rate risk measures:," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 13(3), pages 141-165, December.
    6. Montagut, Esperanza H., 2004. "Hedging bond portfolios versus infinitely many ranked factors of risk," DEE - Working Papers. Business Economics. WB wb043312, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    7. Jorge Miguel Ventura Bravo & Carlos Manuel Pereira da Silva, 2005. "Immunization Using a Parametric Model of the Term Structure," Economics Working Papers 19_2005, University of Évora, Department of Economics (Portugal).
    8. Marek Kałuszka & Alina Kondratiuk-Janyska, 2004. "On Duration-Dispersion Strategies for Portfolio Immunization," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Władysław Milo & Piotr Wdowiński (ed.), Acta Universitatis Lodziensis. Folia Oeconomica nr 177/2004 - Forecasting and Decision-Making in Financial Markets, edition 1, volume 127, chapter 12, pages 191-202, University of Lodz.
    9. Barber, Joel R. & Copper, Mark L., 1998. "A minimax risk strategy for portfolio immunization," Insurance: Mathematics and Economics, Elsevier, vol. 23(2), pages 173-177, November.
    10. Almeida, Caio & Lund, Bruno, 2014. "Immunization of Fixed-Income Portfolios Using an Exponential Parametric Model," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 34(2), November.
    11. Soto, Gloria M., 2004. "Duration models and IRR management: A question of dimensions?," Journal of Banking & Finance, Elsevier, vol. 28(5), pages 1089-1110, May.
    12. Ibáñez, Alfredo, 1994. "When can you immunize a bond portfolio?," DEE - Working Papers. Business Economics. WB 7078, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    13. Michael Theobald & Peter Yallup, 2010. "Liability-driven investment: multiple liabilities and the question of the number of moments," The European Journal of Finance, Taylor & Francis Journals, vol. 16(5), pages 413-435.
    14. Lesseig, Vance P. & Stock, Duane, 2000. "Impact of Correlation of Asset Value and Interest Rates upon Duration and Convexity of Risky Debt," Journal of Business Research, Elsevier, vol. 49(3), pages 289-301, September.
    15. Joel Barber & Mark Copper, 1998. "Bond immunization for additive interest rate shocks," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 22(2), pages 77-84, June.
    16. Nawalkha, Sanjay K. & Soto, Gloria M. & Zhang, Jun, 2003. "Generalized M-vector models for hedging interest rate risk," Journal of Banking & Finance, Elsevier, vol. 27(8), pages 1581-1604, August.
    17. Joseba Iñaki De La Peña & Iván Iturricastillo & Rafael Moreno & Francisco Román & Eduardo Trigo, 2021. "Towards an immunization perfect model?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1181-1196, January.
    18. Victor Lapshin, 2021. "Immunizing a Marked-to-Model Obligation with Marked-to-Market Financial Instruments," HSE Working papers WP BRP 84/FE/2021, National Research University Higher School of Economics.
    19. George G. Kaufman, 1980. "Duration, Planning Period, And Tests Of The Capital Asset Pricing Model," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 3(1), pages 1-9, March.
    20. Francis X. Diebold & Lei Ji & Canlin Li, 2006. "A Three-Factor Yield Curve Model: Non-Affine Structure, Systematic Risk Sources and Generalized Duration," Chapters, in: Lawrence R. Klein (ed.), Long-run Growth and Short-run Stabilization, chapter 9, Edward Elgar Publishing.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:26:y:2002:i:6:p:1229-1244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.