IDEAS home Printed from https://ideas.repec.org/p/uac/somwps/014.html
   My bibliography  Save this paper

La aplicación de un modelo de factores a las curvas de rendimiento del mercado de deuda pública colombiano

Author

Listed:
  • Bautista, Rafaél

    (School of Management, Universidad de Los Andes)

  • Riáscos, Álvaro

    (School of Management, Universidad de Los Andes)

  • Suárez, Nicolás

    (School of Management, Universidad de Los Andes)

Abstract

El mercado de deuda pública colombiano posee la suficiente liquidez y frecuencia de transacciones como para servir de base para diferentes estudios empíricos relacionados con su estructura de tasas. Aunque es una práctica común construir la curva de estructura de rendimientos mediante métodos numéricos, es también sabido que dicha construcción, por carecer de un marco conceptual, no da indicios acerca de la conexión que hay entre los diferentes vencimientos, o de éstos con las variables primarias de la economía. En resumen, las curvas ajustadas a condiciones mo- mentáneas del mercado son una “caja negra”. En tiem- pos recientes han surgido aproximaciones (Diebold y Li 2006) al estudio de la curva de estructura, que dan una esperanza para fundamentar su papel dentro del marco más amplio de las teorías del equilibrio económico. En el presente estudio se establece empí- ricamente que, al menos el mercado de deuda públi- ca denominada en pesos (los TES), conforma de manera satisfactoria con los mismos resultados obte- nidos para el mercado de renta fija en los EEUU. Ade- más de ese resultado, el estudio de la asociación de la curva con las variables macroeconómicas revela que en el caso colombiano las tasas de largo plazo: a) su componente real depende de manera importante de las expectativas inflacionarias, contradiciendo la hi- pótesis de Fisher; b) a través de su dependencia dicotómica con el índice de producción industrial, revelan un nivel latente de éste para el cual se da un escalón de aversión al riesgo sistemático, cuya com- ponente se estima en dos puntos porcentuales reales

Suggested Citation

  • Bautista, Rafaél & Riáscos, Álvaro & Suárez, Nicolás, 2007. "La aplicación de un modelo de factores a las curvas de rendimiento del mercado de deuda pública colombiano," Galeras. Working Papers Series 014, Universidad de Los Andes. Facultad de Administración. School of Management.
  • Handle: RePEc:uac:somwps:014
    as

    Download full text from publisher

    File URL: https://repositorio.uniandes.edu.co/bitstream/handle/1992/46384/Galeras-de-administraci%C3%B3n-14.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ang, Andrew & Piazzesi, Monika, 2003. "A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 745-787, May.
    2. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    3. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    4. Diebold, Francis X. & Rudebusch, Glenn D. & Borag[caron]an Aruoba, S., 2006. "The macroeconomy and the yield curve: a dynamic latent factor approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 309-338.
    5. Fuhrer, Jeffrey C & Moore, George R, 1995. "Monetary Policy Trade-offs and the Correlation between Nominal Interest Rates and Real Output," American Economic Review, American Economic Association, vol. 85(1), pages 219-239, March.
    6. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
    7. Tao Wu, 2003. "What makes the yield curve move?," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, issue jun6.
    8. Pennacchi, George G, 1991. "Identifying the Dynamics of Real Interest Rates and Inflation: Evidence Using Survey Data," The Review of Financial Studies, Society for Financial Studies, vol. 4(1), pages 53-86.
    9. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    10. Marco Morales, 2010. "The real yield curve and macroeconomic factors in the Chilean economy," Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3533-3545.
    11. Fama, Eugene F & Bliss, Robert R, 1987. "The Information in Long-Maturity Forward Rates," American Economic Review, American Economic Association, vol. 77(4), pages 680-692, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alfredo Trespalacios Carrasquilla & José Miguel Sánchez, 2018. "Sobre la volatilidad de la curva de rendimientos del mercado colombiano de deuda pública," Revista Ecos de Economía, Universidad EAFIT, vol. 22(46), pages 28-59, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J.Marcelo Ochoa, 2006. "An interpretation of an affine term structure model of Chile," Estudios de Economia, University of Chile, Department of Economics, vol. 33(2 Year 20), pages 155-184, December.
    2. Eric Hillebrand & Huiyu Huang & Tae-Hwy Lee & Canlin Li, 2018. "Using the Entire Yield Curve in Forecasting Output and Inflation," Econometrics, MDPI, vol. 6(3), pages 1-27, August.
    3. Christensen, Jens H.E. & Diebold, Francis X. & Rudebusch, Glenn D., 2011. "The affine arbitrage-free class of Nelson-Siegel term structure models," Journal of Econometrics, Elsevier, vol. 164(1), pages 4-20, September.
    4. Luis Ceballos & Alberto Naudon & Damián Romero, 2016. "Nominal term structure and term premia: evidence from Chile," Applied Economics, Taylor & Francis Journals, vol. 48(29), pages 2721-2735, June.
    5. S. Boragan Aruoba & Francis X. Diebold & Glenn D. Rudebusch, 2003. "The macroeconomy and the yield curve: a nonstructural analysis," Working Paper Series 2003-18, Federal Reserve Bank of San Francisco.
    6. Diebold, Francis X. & Rudebusch, Glenn D. & Borag[caron]an Aruoba, S., 2006. "The macroeconomy and the yield curve: a dynamic latent factor approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 309-338.
    7. Michiel De Pooter & Francesco Ravazzolo & Dick van Dijk, 2010. "Term structure forecasting using macro factors and forecast combination," International Finance Discussion Papers 993, Board of Governors of the Federal Reserve System (U.S.).
    8. De Pooter, Michiel & Ravazzolo, Francesco & van Dijk, Dick, 2006. "Predicting the term structure of interest rates incorporating parameter uncertainty, model uncertainty and macroeconomic information," MPRA Paper 2512, University Library of Munich, Germany, revised 03 Mar 2007.
    9. Coroneo, Laura & Nyholm, Ken & Vidova-Koleva, Rositsa, 2011. "How arbitrage-free is the Nelson-Siegel model?," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 393-407, June.
    10. Lange, Ronald Henry, 2018. "The term structure of liquidity premia and the macroeconomy in Canada: A dynamic latent-factor approach," International Review of Economics & Finance, Elsevier, vol. 57(C), pages 164-182.
    11. Ranik Raaen Wahlstrøm & Florentina Paraschiv & Michael Schürle, 2022. "A Comparative Analysis of Parsimonious Yield Curve Models with Focus on the Nelson-Siegel, Svensson and Bliss Versions," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 967-1004, March.
    12. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    13. Evangelos Salachas & Georgios P. Kouretas & Nikiforos T. Laopodis, 2024. "The term structure of interest rates and economic activity: Evidence from the COVID‐19 pandemic," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1018-1041, July.
    14. Andr? Kurmann & Christopher Otrok, 2013. "News Shocks and the Slope of the Term Structure of Interest Rates," American Economic Review, American Economic Association, vol. 103(6), pages 2612-2632, October.
    15. Adam Traczyk, 2013. "Financial integration and the term structure of interest rates," Empirical Economics, Springer, vol. 45(3), pages 1267-1305, December.
    16. Kaya, Huseyin, 2013. "Forecasting the yield curve and the role of macroeconomic information in Turkey," Economic Modelling, Elsevier, vol. 33(C), pages 1-7.
    17. Laurini, Márcio P. & Caldeira, João F., 2016. "A macro-finance term structure model with multivariate stochastic volatility," International Review of Economics & Finance, Elsevier, vol. 44(C), pages 68-90.
    18. Gourieroux, C. & Monfort, A. & Sufana, R., 2010. "International money and stock market contingent claims," Journal of International Money and Finance, Elsevier, vol. 29(8), pages 1727-1751, December.
    19. Andrea Carriero, 2011. "Forecasting The Yield Curve Using Priors From No‐Arbitrage Affine Term Structure Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(2), pages 425-459, May.
    20. Carlo A. Favero & Linlin Niu & Luca Sala, 2012. "Term Structure Forecasting: No‐Arbitrage Restrictions versus Large Information Set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(2), pages 124-156, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uac:somwps:014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rodrigo Taborda (email available below). General contact details of provider: https://edirc.repec.org/data/faandco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.