Asymptotic study of stochastic adaptive algorithm in non-convex landscape
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Gadat, Sébastien & Panloup, Fabien & Saadane, Sofiane, 2016. "Stochastic Heavy Ball," TSE Working Papers 16-712, Toulouse School of Economics (TSE).
- Heinz H. Bauschke & Jérôme Bolte & Marc Teboulle, 2017. "A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 330-348, May.
- Costa, Manon & Gadat, Sébastien & Bercu, Bernard, 2020. "Stochastic approximation algorithms for superquantiles estimation," TSE Working Papers 20-1142, Toulouse School of Economics (TSE).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Emilie Chouzenoux & Jean-Baptiste Fest, 2022. "SABRINA: A Stochastic Subspace Majorization-Minimization Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 919-952, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sébastien Gadat & Ioana Gavra, 2022. "Asymptotic study of stochastic adaptive algorithm in non-convex landscape," Post-Print hal-03857182, HAL.
- Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
- HyungSeon Oh, 2021. "Distributed optimal power flow," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-27, June.
- Zehui Jia & Jieru Huang & Xingju Cai, 2021. "Proximal-like incremental aggregated gradient method with Bregman distance in weakly convex optimization problems," Journal of Global Optimization, Springer, vol. 80(4), pages 841-864, August.
- Fan Wu & Wei Bian, 2023. "Smoothing Accelerated Proximal Gradient Method with Fast Convergence Rate for Nonsmooth Convex Optimization Beyond Differentiability," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 539-572, May.
- Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
- Emanuel Laude & Peter Ochs & Daniel Cremers, 2020. "Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 724-761, March.
- Yin Liu & Sam Davanloo Tajbakhsh, 2023. "Stochastic Composition Optimization of Functions Without Lipschitz Continuous Gradient," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 239-289, July.
- Radu-Alexandru Dragomir & Alexandre d’Aspremont & Jérôme Bolte, 2021. "Quartic First-Order Methods for Low-Rank Minimization," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 341-363, May.
- Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 79(3), pages 681-715, July.
- Xiantao Xiao, 2021. "A Unified Convergence Analysis of Stochastic Bregman Proximal Gradient and Extragradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 188(3), pages 605-627, March.
- Filip Hanzely & Peter Richtárik, 2021. "Fastest rates for stochastic mirror descent methods," Computational Optimization and Applications, Springer, vol. 79(3), pages 717-766, July.
- Abbaszadehpeivasti, Hadi, 2024. "Performance analysis of optimization methods for machine learning," Other publications TiSEM 3050a62d-1a1f-494e-99ef-7, Tilburg University, School of Economics and Management.
- Yunier Bello-Cruz & Guoyin Li & Tran Thai An Nghia, 2022. "Quadratic Growth Conditions and Uniqueness of Optimal Solution to Lasso," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 167-190, July.
- Yunier Bello-Cruz & Guoyin Li & Tran T. A. Nghia, 2021. "On the Linear Convergence of Forward–Backward Splitting Method: Part I—Convergence Analysis," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 378-401, February.
- Xin Jiang & Lieven Vandenberghe, 2023. "Bregman Three-Operator Splitting Methods," Journal of Optimization Theory and Applications, Springer, vol. 196(3), pages 936-972, March.
- Regina S. Burachik & Yaohua Hu & Xiaoqi Yang, 2022. "Interior quasi-subgradient method with non-Euclidean distances for constrained quasi-convex optimization problems in hilbert spaces," Journal of Global Optimization, Springer, vol. 83(2), pages 249-271, June.
- Zamani, Moslem & Abbaszadehpeivasti, Hadi & de Klerk, Etienne, 2024. "The exact worst-case convergence rate of the alternating direction method of multipliers," Other publications TiSEM f30ae9e6-ed19-423f-bd1e-0, Tilburg University, School of Economics and Management.
- Costa, Manon & Gadat, Sébastien & Bercu, Bernard, 2020. "Stochastic approximation algorithms for superquantiles estimation," TSE Working Papers 20-1142, Toulouse School of Economics (TSE).
- Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
More about this item
Keywords
Stochastic optimization; Stochastic adaptive algorithm; Convergence of random variables;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2021-01-25 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:125116. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.