IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/124668.html
   My bibliography  Save this paper

Stochastic approximation algorithms for superquantiles estimation

Author

Listed:
  • Costa, Manon
  • Gadat, Sébastien
  • Bercu, Bernard

Abstract

This paper is devoted to two dierent two-time-scale stochastic ap- proximation algorithms for superquantile estimation. We shall investigate the asymptotic behavior of a Robbins-Monro estimator and its convexied version. Our main contribution is to establish the almost sure convergence, the quadratic strong law and the law of iterated logarithm for our estimates via a martingale approach. A joint asymptotic normality is also provided. Our theoretical analysis is illustrated by numerical experiments on real datasets.

Suggested Citation

  • Costa, Manon & Gadat, Sébastien & Bercu, Bernard, 2020. "Stochastic approximation algorithms for superquantiles estimation," TSE Working Papers 20-1142, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:124668
    as

    Download full text from publisher

    File URL: https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2020/wp_tse_1142.pdf
    File Function: Full Text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gadat, Sébastien & Panloup, Fabien & Saadane, Sofiane, 2016. "Stochastic Heavy Ball," TSE Working Papers 16-712, Toulouse School of Economics (TSE).
    2. Bardou O. & Frikha N. & Pagès G., 2009. "Computing VaR and CVaR using stochastic approximation and adaptive unconstrained importance sampling," Monte Carlo Methods and Applications, De Gruyter, vol. 15(3), pages 173-210, January.
    3. Pelletier, Mariane, 1998. "On the almost sure asymptotic behaviour of stochastic algorithms," Stochastic Processes and their Applications, Elsevier, vol. 78(2), pages 217-244, November.
    4. Aharon Ben-Tal & Marc Teboulle, 1986. "Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming," Management Science, INFORMS, vol. 32(11), pages 1445-1466, November.
    5. Bercu, B., 2004. "On the convergence of moments in the almost sure central limit theorem for martingales with statistical applications," Stochastic Processes and their Applications, Elsevier, vol. 111(1), pages 157-173, May.
    6. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gadat, Sébastien & Gavra, Ioana, 2021. "Asymptotic study of stochastic adaptive algorithm in non-convex landscape," TSE Working Papers 21-1175, Toulouse School of Economics (TSE).
    2. Vishwajit Hegde & Arvind S. Menon & L. A. Prashanth & Krishna Jagannathan, 2021. "Online Estimation and Optimization of Utility-Based Shortfall Risk," Papers 2111.08805, arXiv.org, revised Nov 2023.
    3. Manon Costa & Sébastien Gadat, 2021. "Non-asymptotic study of a recursive superquantile estimation algorithm," Post-Print hal-03610477, HAL.
    4. Sébastien Gadat & Ioana Gavra, 2022. "Asymptotic study of stochastic adaptive algorithm in non-convex landscape," Post-Print hal-03857182, HAL.
    5. Gadat, Sébastien & Costa, Manon, 2020. "Non asymptotic controls on a stochastic algorithm for superquantile approximation," TSE Working Papers 20-1149, Toulouse School of Economics (TSE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geissel Sebastian & Sass Jörn & Seifried Frank Thomas, 2018. "Optimal expected utility risk measures," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 73-87, January.
    2. Kim, Sojung & Weber, Stefan, 2022. "Simulation methods for robust risk assessment and the distorted mix approach," European Journal of Operational Research, Elsevier, vol. 298(1), pages 380-398.
    3. Weiwei Li & Dejian Tian, 2023. "Robust optimized certainty equivalents and quantiles for loss positions with distribution uncertainty," Papers 2304.04396, arXiv.org.
    4. Prékopa, András & Lee, Jinwook, 2018. "Risk tomography," European Journal of Operational Research, Elsevier, vol. 265(1), pages 149-168.
    5. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    6. Martin Herdegen & Nazem Khan, 2022. "$\rho$-arbitrage and $\rho$-consistent pricing for star-shaped risk measures," Papers 2202.07610, arXiv.org, revised May 2024.
    7. Radu Boţ & Alina-Ramona Frătean, 2011. "Looking for appropriate qualification conditions for subdifferential formulae and dual representations for convex risk measures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(2), pages 191-215, October.
    8. Patrick Cheridito & Tianhui Li, 2009. "Risk Measures On Orlicz Hearts," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 189-214, April.
    9. Krokhmal, Pavlo A. & Soberanis, Policarpio, 2010. "Risk optimization with p-order conic constraints: A linear programming approach," European Journal of Operational Research, Elsevier, vol. 201(3), pages 653-671, March.
    10. Samuel Drapeau & Michael Kupper & Antonis Papapantoleon, 2012. "A Fourier Approach to the Computation of CV@R and Optimized Certainty Equivalents," Papers 1212.6732, arXiv.org, revised Dec 2013.
    11. Daniel R. Jiang & Warren B. Powell, 2018. "Risk-Averse Approximate Dynamic Programming with Quantile-Based Risk Measures," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 554-579, May.
    12. Manon Costa & Sébastien Gadat, 2021. "Non-asymptotic study of a recursive superquantile estimation algorithm," Post-Print hal-03610477, HAL.
    13. Gadat, Sébastien & Costa, Manon, 2020. "Non asymptotic controls on a stochastic algorithm for superquantile approximation," TSE Working Papers 20-1149, Toulouse School of Economics (TSE).
    14. Gadat, Sébastien & Costa, Manon & Huang, Lorick, 2022. "CV@R penalized portfolio optimization with biased stochastic mirror descent," TSE Working Papers 22-1342, Toulouse School of Economics (TSE), revised Nov 2023.
    15. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    16. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    17. Dominique Guégan & Wayne Tarrant, 2012. "On the necessity of five risk measures," Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
    18. Rockafellar, R.T. & Royset, J.O., 2010. "On buffered failure probability in design and optimization of structures," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 499-510.
    19. Li, Bo & Hou, Peng-Wen & Chen, Ping & Li, Qing-Hua, 2016. "Pricing strategy and coordination in a dual channel supply chain with a risk-averse retailer," International Journal of Production Economics, Elsevier, vol. 178(C), pages 154-168.
    20. Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:124668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.