A Revisit to Estimation of the Precision Matrix of the Wishart Distribution
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sheena, Yo & Takemura, Akimichi, 1992. "Inadmissibility of non-order-preserving orthogonally invariant estimators of the covariance matrix in the case of Stein's loss," Journal of Multivariate Analysis, Elsevier, vol. 41(1), pages 117-131, April.
- Dey D. K. & Ghosh M. & Srinivasan C., 1990. "A New Class Of Improved Estimators Of A Multinormal Precision Matrix," Statistics & Risk Modeling, De Gruyter, vol. 8(2), pages 141-152, February.
- Zheng, Z., 1986. "On estimation of matrix of normal mean," Journal of Multivariate Analysis, Elsevier, vol. 18(1), pages 70-82, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tsukuma, Hisayuki, 2008. "Admissibility and minimaxity of Bayes estimators for a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2251-2264, November.
- Shalabh, 1998. "Improved Estimation in Measurement Error Models Through Stein Rule Procedure," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 35-48, October.
- Tatsuya Kubokawa & M. S. Srivastava, 1999. ""Estimating the Covariance Matrix: A New Approach", June 1999," CIRJE F-Series CIRJE-F-52, CIRJE, Faculty of Economics, University of Tokyo.
- Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
- Ye, Ren-Dao & Wang, Song-Gui, 2009. "Improved estimation of the covariance matrix under Stein's loss," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 715-721, March.
- Takemura, Akimichi & Sheena, Yo, 2005. "Distribution of eigenvalues and eigenvectors of Wishart matrix when the population eigenvalues are infinitely dispersed and its application to minimax estimation of covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 271-299, June.
- Matsuda, Takeru & Strawderman, William E., 2019. "Improved loss estimation for a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 300-311.
- Tsukuma, Hisayuki, 2016. "Estimation of a high-dimensional covariance matrix with the Stein loss," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 1-17.
- Tsai, Ming-Tien & Kubokawa, Tatsuya, 2007. "Estimation of Wishart mean matrices under simple tree ordering," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 945-959, May.
- Bodnar, Olha & Bodnar, Taras & Parolya, Nestor, 2022. "Recent advances in shrinkage-based high-dimensional inference," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Tsukuma, Hisayuki & Konno, Yoshihiko, 2006. "On improved estimation of normal precision matrix and discriminant coefficients," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1477-1500, August.
- Konno, Yoshihiko, 2001. "Inadmissibility of the Maximum Likekihood Estimator of Normal Covariance Matrices with the Lattice Conditional Independence," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 33-51, October.
- Sheena, Yo & Takemura, Akimichi, 2008. "Asymptotic distribution of Wishart matrix for block-wise dispersion of population eigenvalues," Journal of Multivariate Analysis, Elsevier, vol. 99(4), pages 751-775, April.
- Satoshi Kuriki, 1993. "Orthogonally invariant estimation of the skew-symmetric normal mean matrix," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(4), pages 731-739, December.
- Sheena Yo & Gupta Arjun K., 2003. "Estimation of the multivariate normal covariance matrix under some restrictions," Statistics & Risk Modeling, De Gruyter, vol. 21(4), pages 327-342, April.
- Fourdrinier, Dominique & Mezoued, Fatiha & Wells, Martin T., 2016. "Estimation of the inverse scatter matrix of an elliptically symmetric distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 32-55.
- Kubokawa, T. & Srivastava, M. S., 2003. "Estimating the covariance matrix: a new approach," Journal of Multivariate Analysis, Elsevier, vol. 86(1), pages 28-47, July.
- Xiangyu Cui & Xuan Zhang, 2021. "Index tracking strategy based on mixed-frequency financial data," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-15, April.
- Tatsuya Kubokawa & M. S. Srivastava, 2002. "Estimating the Covariance Matrix: A New Approach," CIRJE F-Series CIRJE-F-162, CIRJE, Faculty of Economics, University of Tokyo.
- Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2017. "Proper Bayes and minimax predictive densities related to estimation of a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 138-150.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2004-03-07 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2004cf264. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.