IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/fd8dd91c-086f-40e6-ac29-3785bd0b56cd.html
   My bibliography  Save this paper

Extreme Value Inference for General Heterogeneous Data

Author

Listed:
  • Einmahl, John

    (Tilburg University, Center For Economic Research)

  • He, Y.

    (Tilburg University, Center For Economic Research)

Abstract

No abstract is available for this item.

Suggested Citation

  • Einmahl, John & He, Y., 2022. "Extreme Value Inference for General Heterogeneous Data," Discussion Paper 2022-017, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:fd8dd91c-086f-40e6-ac29-3785bd0b56cd
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/63469170/2022_017.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. John H. J. Einmahl & Yi He, 2022. "Extreme Value Estimation for Heterogeneous Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 255-269, December.
    2. Laurens de Haan & Chen Zhou, 2021. "Trends in Extreme Value Indices," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(535), pages 1265-1279, July.
    3. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    4. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2003. "A theory of power-law distributions in financial market fluctuations," Nature, Nature, vol. 423(6937), pages 267-270, May.
    5. John H. J. Einmahl & Laurens Haan & Chen Zhou, 2016. "Statistics of heteroscedastic extremes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 31-51, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Einmahl, John & He, Y., 2022. "Extreme Value Inference for General Heterogeneous Data," Other publications TiSEM fd8dd91c-086f-40e6-ac29-3, Tilburg University, School of Economics and Management.
    2. Cui, Hengxin & Tan, Ken Seng & Yang, Fan & Zhou, Chen, 2022. "Asymptotic analysis of portfolio diversification," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 302-325.
    3. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    4. Haoyu Chen & Tiantian Mao & Fan Yang, 2024. "Estimation of the Adjusted Standard-deviatile for Extreme Risks," Papers 2411.07203, arXiv.org.
    5. Ahmed, Hanan, 2022. "Extreme value statistics using related variables," Other publications TiSEM 246f0f13-701c-4c0d-8e09-e, Tilburg University, School of Economics and Management.
    6. Yaolan Ma & Bo Wei & Wei Huang, 2020. "A nonparametric estimator for the conditional tail index of Pareto-type distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 17-44, January.
    7. Enzo D'Innocenzo & Andre Lucas & Bernd Schwaab & Xin Zhang, 2024. "Joint extreme Value-at-Risk and Expected Shortfall dynamics with a single integrated tail shape parameter," Tinbergen Institute Discussion Papers 24-069/III, Tinbergen Institute.
    8. Natalia Markovich & Marijus Vaičiulis, 2023. "Extreme Value Statistics for Evolving Random Networks," Mathematics, MDPI, vol. 11(9), pages 1-35, May.
    9. Stupfler, Gilles & Yang, Fan, 2018. "Analyzing And Predicting Cat Bond Premiums: A Financial Loss Premium Principle And Extreme Value Modeling," ASTIN Bulletin, Cambridge University Press, vol. 48(1), pages 375-411, January.
    10. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    11. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    12. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    13. Chen, Yu & Ma, Mengyuan & Sun, Hongfang, 2023. "Statistical inference for extreme extremile in heavy-tailed heteroscedastic regression model," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 142-162.
    14. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    15. Hou, Yanxi & Leng, Xuan & Peng, Liang & Zhou, Yinggang, 2024. "Panel quantile regression for extreme risk," Journal of Econometrics, Elsevier, vol. 240(1).
    16. Giorgio Fagiolo & Mauro Napoletano & Andrea Roventini, 2008. "Are output growth-rate distributions fat-tailed? some evidence from OECD countries," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 639-669.
    17. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    18. Jørgen Vitting Andersen & Ioannis Vrontos & Petros Dellaportas & Serge Galam, 2014. "Communication impacting financial markets," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00982959, HAL.
    19. Jacek Wójcik, 2017. "Consequences of the Cognitive Digital Divide on the Consumer Market," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 44, pages 69-80.
    20. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:fd8dd91c-086f-40e6-ac29-3785bd0b56cd. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: http://center.uvt.nl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.