IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v116y2021i535p1265-1279.html
   My bibliography  Save this article

Trends in Extreme Value Indices

Author

Listed:
  • Laurens de Haan
  • Chen Zhou

Abstract

We consider extreme value analysis for independent but nonidentically distributed observations. In particular, the observations do not share the same extreme value index. Assuming continuously changing extreme value indices, we provide a nonparametric estimate for the functional extreme value index. Besides estimating the extreme value index locally, we also provide a global estimator for the trend and its joint asymptotic theory. The asymptotic theory for the global estimator can be used for testing a prespecified parametric trend in the extreme value indices. In particular, it can be applied to test whether the extreme value index remains at a constant level across all observations.

Suggested Citation

  • Laurens de Haan & Chen Zhou, 2021. "Trends in Extreme Value Indices," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(535), pages 1265-1279, July.
  • Handle: RePEc:taf:jnlasa:v:116:y:2021:i:535:p:1265-1279
    DOI: 10.1080/01621459.2019.1705307
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1705307
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1705307?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Einmahl, John & He, Y., 2022. "Extreme Value Inference for General Heterogeneous Data," Discussion Paper 2022-017, Tilburg University, Center for Economic Research.
    2. Einmahl, John & He, Y., 2022. "Extreme Value Inference for General Heterogeneous Data," Other publications TiSEM fd8dd91c-086f-40e6-ac29-3, Tilburg University, School of Economics and Management.
    3. Di Bernardino, Elena & Laloë, Thomas & Pakzad, Cambyse, 2024. "Estimation of extreme multivariate expectiles with functional covariates," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    4. Enzo D'Innocenzo & Andre Lucas & Bernd Schwaab & Xin Zhang, 2024. "Joint extreme Value-at-Risk and Expected Shortfall dynamics with a single integrated tail shape parameter," Tinbergen Institute Discussion Papers 24-069/III, Tinbergen Institute.
    5. Natalia Markovich & Marijus Vaičiulis, 2023. "Extreme Value Statistics for Evolving Random Networks," Mathematics, MDPI, vol. 11(9), pages 1-35, May.
    6. He, Yi & Einmahl, John, 2024. "Extreme Value Inference for General Heterogeneous Data," Other publications TiSEM 5d01cb7e-d528-406d-8c24-c, Tilburg University, School of Economics and Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:116:y:2021:i:535:p:1265-1279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.