IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v22y1993i2p97-106.html
   My bibliography  Save this article

On the Set of Proper Equilibria of a Bimatrix Game

Author

Listed:
  • Jansen, Mathijs

Abstract

In this paper it is proved that the set of proper equilibria of a bimatrix game is the finite union of polytopes. To that purpose we split up the strategy space of each player into a finite number of equivalence classes and consider for a given [epsilon] [greater than] 0 the set of all [epsilon]-proper pairs within the cartesian product of two equivalence classes. If this set is non-empty, its closure is a polytope. By considering this polytope as [epsilon] goes to zero, we obtain a (Myerson) set of proper equilibria. A Myerson set appears to be a polytope.

Suggested Citation

  • Jansen, Mathijs, 1993. "On the Set of Proper Equilibria of a Bimatrix Game," International Journal of Game Theory, Springer;Game Theory Society, vol. 22(2), pages 97-106.
  • Handle: RePEc:spr:jogath:v:22:y:1993:i:2:p:97-106
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kleppe, John & Borm, Peter & Hendrickx, Ruud, 2012. "Fall back equilibrium," European Journal of Operational Research, Elsevier, vol. 223(2), pages 372-379.
    2. Fiestras-Janeiro, G. & Borm, P.E.M. & van Megen, F.J.C., 1996. "Protective Behavior in Games," Other publications TiSEM 0f0d5aed-021d-45d8-9776-0, Tilburg University, School of Economics and Management.
    3. Dieter Balkenborg & Josef Hofbauer & Christoph Kuzmics, 2015. "The refined best-response correspondence in normal form games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(1), pages 165-193, February.
    4. John Kleppe & Peter Borm & Ruud Hendrickx, 2013. "Fall back equilibrium for $$2 \times n$$ bimatrix games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(2), pages 171-186, October.
    5. van Beek, Andries & Borm, Peter, 2024. "Entangled Equilibria for Bimatrix Games," Other publications TiSEM 834facb8-8e33-4046-a452-7, Tilburg University, School of Economics and Management.
    6. A. J. Vermeulen & M. J. M. Jansen, 1994. "On the set of (perfect) equilibria of a bimatrix game," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(2), pages 295-302, March.
    7. van Beek, Andries & Borm, Peter, 2024. "Entangled Equilibria for Bimatrix Games," Discussion Paper 2024-016, Tilburg University, Center for Economic Research.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:22:y:1993:i:2:p:97-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.