IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/5792b50b-8b99-46dd-bba5-435b1d607152.html
   My bibliography  Save this paper

Fuzzy Cores and Fuzzy Balancedness

Author

Listed:
  • van Gulick, G.

    (Tilburg University, Center For Economic Research)

  • Norde, H.W.

    (Tilburg University, Center For Economic Research)

Abstract

We study the relation between the fuzzy core and balancedness for fuzzy games. For regular games, this relation has been studied by Bondareva (Problemy Kibernet 10:119–139, 1963 ) and Shapley (Naval Res Logist Q 14: 453–460, 1967 ). First, we gain insight in this relation when we analyse situations where the fuzzy game is continuous. Our main result shows that any fuzzy game has a non-empty core if and only if it is balanced. We also consider deposit games to illustrate the use of the main result. Copyright Springer-Verlag Berlin Heidelberg 2013
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • van Gulick, G. & Norde, H.W., 2011. "Fuzzy Cores and Fuzzy Balancedness," Discussion Paper 2011-062, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:5792b50b-8b99-46dd-bba5-435b1d607152
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/1335567/2011-062.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Brânzei, R. & Dimitrov, D.A. & Tijs, S.H., 2002. "Convex Fuzzy Games and Participation Monotonic Allocation Schemes," Discussion Paper 2002-13, Tilburg University, Center for Economic Research.
    2. Yan-An Hwang & Yu-Hsien Liao, 2010. "The unit-level-core for multi-choice games: the replicated core for TU games," Journal of Global Optimization, Springer, vol. 47(2), pages 161-171, June.
    3. van Gulick, Gerwald & Borm, Peter & De Waegenaere, Anja & Hendrickx, Ruud, 2010. "Deposit games with reinvestment," European Journal of Operational Research, Elsevier, vol. 200(3), pages 788-799, February.
    4. Rodica Branzei & Dinko Dimitrov & Stef Tijs, 2008. "Models in Cooperative Game Theory," Springer Books, Springer, edition 0, number 978-3-540-77954-4, February.
    5. Yaron Azrieli & Ehud Lehrer, 2007. "Market Games in Large Economies with a Finite Number of Types," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 31(2), pages 327-342, May.
    6. Branzei, R. & Tijs, S.H., 2003. "On convex fuzzy games," Other publications TiSEM b53ebd70-807d-46cf-a854-f, Tilburg University, School of Economics and Management.
    7. Tijs, S.H. & Brânzei, R. & Ishihara, S. & Muto, S., 2004. "On cores and stable sets for fuzzy games," Other publications TiSEM 66dd20be-cb4b-4b6d-937e-0, Tilburg University, School of Economics and Management.
    8. Hsiao Chih-Ru & Raghavan T. E. S., 1993. "Shapley Value for Multichoice Cooperative Games, I," Games and Economic Behavior, Elsevier, vol. 5(2), pages 240-256, April.
    9. Jean-Pierre Aubin, 1981. "Cooperative Fuzzy Games," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jiuqiang & Tian, Hai-Yan, 2014. "Existence of fuzzy cores and generalizations of the K–K–M–S theorem," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 148-152.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Gulick, G. & Norde, H.W., 2011. "Fuzzy Cores and Fuzzy Balancedness," Other publications TiSEM 5792b50b-8b99-46dd-bba5-4, Tilburg University, School of Economics and Management.
    2. Yaron Azrieli & Ehud Lehrer, 2007. "On some families of cooperative fuzzy games," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(1), pages 1-15, September.
    3. Michel Grabisch, 2006. "Capacities and Games on Lattices: A Survey of Result," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00179830, HAL.
    4. Wenbo Yang & Jiuqiang Liu & Xiaodong Liu, 2011. "Aubin cores and bargaining sets for convex cooperative fuzzy games," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(3), pages 467-479, August.
    5. Michel Grabisch & Fabien Lange, 2007. "Games on lattices, multichoice games and the shapley value: a new approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 153-167, February.
    6. R. Branzei & E. Gutiérrez & N. Llorca & J. Sánchez-Soriano, 2021. "Does it make sense to analyse a two-sided market as a multi-choice game?," Annals of Operations Research, Springer, vol. 301(1), pages 17-40, June.
    7. Branzei, Rodica & Dimitrov, Dinko & Tijs, Stef, 2004. "Egalitarianism in convex fuzzy games," Mathematical Social Sciences, Elsevier, vol. 47(3), pages 313-325, May.
    8. R. Branzei & N. Llorca & J. Sánchez-Soriano & S. Tijs, 2014. "A constrained egalitarian solution for convex multi-choice games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 860-874, October.
    9. Yu-Hsien Liao, 2013. "The Shapley value for fuzzy games: TU games approach," Economics Bulletin, AccessEcon, vol. 33(1), pages 192-197.
    10. Keyzer, Michiel & van Wesenbeeck, Cornelia, 2011. "Optimal coalition formation and surplus distribution: Two sides of one coin," European Journal of Operational Research, Elsevier, vol. 215(3), pages 604-615, December.
    11. Zuofeng Gao & Yongbo Yu & Hongxin Bai & Chunyan Han, 2008. "A Repeated Convex Fuzzy Cooperative Game," Modern Applied Science, Canadian Center of Science and Education, vol. 2(3), pages 1-54, May.
    12. Tido Takeng, Rodrigue, 2022. "Uncertain production environment and communication structure," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    13. Fanyong Meng & Xiaohong Chen & Chunqiao Tan, 2016. "Cooperative fuzzy games with interval characteristic functions," Operational Research, Springer, vol. 16(1), pages 1-24, April.
    14. Zuofeng Gao & Suting Zhang & Hongxin Bai & Chunyan Han & Sheng Zhao, 2008. "The Stable Set and Weak Stable Set For -person Repeated Fuzzy Cooperative Games," Modern Applied Science, Canadian Center of Science and Education, vol. 2(2), pages 1-97, March.
    15. Liu, Jiuqiang & Liu, Xiaodong, 2013. "A necessary and sufficient condition for an NTU fuzzy game to have a non-empty fuzzy core," Journal of Mathematical Economics, Elsevier, vol. 49(2), pages 150-156.
    16. Monroy, L. & Hinojosa, M.A. & Mármol, A.M. & Fernández, F.R., 2013. "Set-valued cooperative games with fuzzy payoffs. The fuzzy assignment game," European Journal of Operational Research, Elsevier, vol. 225(1), pages 85-90.
    17. Shellshear, Evan, 2011. "Characterizing core stability with fuzzy games," Center for Mathematical Economics Working Papers 410, Center for Mathematical Economics, Bielefeld University.
    18. Haake, Claus-Jochen & Schneider, Martin R., 2024. "Playing games with QCA: The Banzhaf index as a context-sensitive measure of explanatory power in international management," Journal of International Management, Elsevier, vol. 30(2).
    19. Stefano Moretti & Fioravante Patrone, 2008. "Transversality of the Shapley value," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 1-41, July.
    20. Branzei, Rodica & Dimitrov, Dinko & Tijs, Stef, 2004. "Hypercubes and compromise values for cooperative fuzzy games," European Journal of Operational Research, Elsevier, vol. 155(3), pages 733-740, June.

    More about this item

    Keywords

    Cooperative fuzzy games; fuzzy balancedness; fuzzy core;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:5792b50b-8b99-46dd-bba5-435b1d607152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: http://center.uvt.nl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.