IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20180039.html
   My bibliography  Save this paper

Economics in the Anthropocene: Species Extinction or Steady State Economics

Author

Listed:
  • Joeri Sol

    (University of Amsterdam)

Abstract

At the dawn of the Anthropocene, continued economic growth carries the risk of irreversibly damaging the global carrying capacity. Using the International Union for the Conservation of Nature Red List of Threatened Species (2016), I calculate expected extinction rates during the coming century for 557 regions. I illustrate that these rates exceed the planetary boundary formulated by Rockström et al. (2009) virtually everywhere and increase with population density and GDP per capita. By doing so, this paper contributes to an ongoing debate whether absolute or relative scarcity is more relevant to economic thought. My findings suggest that the conservation of nature requires degrowth and the transition to a global steady state economy. “I cannot, therefore, regard the stationary state of capital and wealth with the unaffected aversion so generally manifested towards it by political economists of the old school. I am inclined to believe that it would be, on the whole, a very considerable improvement on our present condition.” John S. Mill (1848, Book 4, Chapter 6)

Suggested Citation

  • Joeri Sol, 2018. "Economics in the Anthropocene: Species Extinction or Steady State Economics," Tinbergen Institute Discussion Papers 18-039/VIII, Tinbergen Institute, revised 07 Oct 2018.
  • Handle: RePEc:tin:wpaper:20180039
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/18039.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    2. Arrow, Kenneth & Bolin, Bert & Costanza, Robert & Dasgupta, Partha & Folke, Carl & Holling, C.S. & Jansson, Bengt-Owe & Levin, Simon & Mäler, Karl-Göran & Perrings, Charles & Pimentel, David, 1996. "Economic growth, carrying capacity, and the environment," Environment and Development Economics, Cambridge University Press, vol. 1(1), pages 104-110, February.
    3. Costanza, Robert, 1995. "Economic growth, carrying capacity, and the environment," Ecological Economics, Elsevier, vol. 15(2), pages 89-90, November.
    4. Christophe McGlade & Paul Ekins, 2015. "The geographical distribution of fossil fuels unused when limiting global warming to 2 °C," Nature, Nature, vol. 517(7533), pages 187-190, January.
    5. Paul J. Crutzen, 2002. "Geology of mankind," Nature, Nature, vol. 415(6867), pages 23-23, January.
    6. K. Frieler & M. Meinshausen & A. Golly & M. Mengel & K. Lebek & S. D. Donner & O. Hoegh-Guldberg, 2013. "Limiting global warming to 2 °C is unlikely to save most coral reefs," Nature Climate Change, Nature, vol. 3(2), pages 165-170, February.
    7. Daly, Herman E, 1974. "The Economics of the Steady State," American Economic Review, American Economic Association, vol. 64(2), pages 15-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sol, Joeri, 2019. "Economics in the anthropocene: species extinction or steady state economics," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    2. George Halkos & Iacovos Psarianos, 2016. "Exploring the effect of including the environment in the neoclassical growth model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(3), pages 339-358, July.
    3. Stern, David I., 2014. "The Environmental Kuznets Curve: A Primer," Working Papers 249424, Australian National University, Centre for Climate Economics & Policy.
    4. Jeffrey A. Frankel & Andrew K. Rose, 2005. "Is Trade Good or Bad for the Environment? Sorting Out the Causality," The Review of Economics and Statistics, MIT Press, vol. 87(1), pages 85-91, February.
    5. Nepal, Rabindra & Paija, Nirash, 2019. "A multivariate time series analysis of energy consumption, real output and pollutant emissions in a developing economy: New evidence from Nepal," Economic Modelling, Elsevier, vol. 77(C), pages 164-173.
    6. Chung Nguyen Hoang, 2021. "The Effects of Economic Integration on CO2 Emission: A View from Institutions in Emerging Economies," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 374-383.
    7. Fida Muhammad & Abdul Qayyum & Abdullah Abdulaziz Bawazir & Meer Jan & Nazeer Ahmed, 2024. "Assessing the Tri-Dimensional Nexus of Energy, Environment, and Economic Growth in Pakistan: An Empirical Study," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 329-343, July.
    8. Dimitar Zlatinov & Bozhidar Nedev & Ilia Atanasov & Nedko Kosev, 2019. "Effects on the Economic Growth in Bulgaria during the Transition to Low-Carbon Economy in the Energy Sector," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 6, pages 110-127.
    9. Max-Neef, Manfred, 1995. "Economic growth and quality of life: a threshold hypothesis," Ecological Economics, Elsevier, vol. 15(2), pages 115-118, November.
    10. David I. Stern, 2017. "The environmental Kuznets curve after 25 years," Journal of Bioeconomics, Springer, vol. 19(1), pages 7-28, April.
    11. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Does innovation respond to climate change? Empirical evidence from patents and greenhouse gas emissions," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 49-62.
    12. repec:ebl:ecbull:v:3:y:2008:i:41:p:1-14 is not listed on IDEAS
    13. Erwin Bulte & John A. List & Mark C. Strazicich, 2007. "Regulatory Federalism And The Distribution Of Air Pollutant Emissions," Journal of Regional Science, Wiley Blackwell, vol. 47(1), pages 155-178, February.
    14. Elvio Accinelli & Juan Gabriel Brida, 2005. "Re-formulation of the Solow economic growth model whit the Richards population growth law," GE, Growth, Math methods 0508006, University Library of Munich, Germany.
    15. Madlener, R. & Alcott, B., 2009. "Energy rebound and economic growth: A review of the main issues and research needs," Energy, Elsevier, vol. 34(3), pages 370-376.
    16. Ricker, Martin, 1997. "Limits to economic growth as shown by a computable general equilibrium model," Ecological Economics, Elsevier, vol. 21(2), pages 141-158, May.
    17. Maxime Menuet & Alexandru Minea & Patrick Villieu & Anastasios Xepapadeas, 2020. "Economic Growth and the Environment: A Theoretical Reappraisal," DEOS Working Papers 2031, Athens University of Economics and Business.
    18. Guilherme de Oliveira & Gilberto Tadeu Lima, 2020. "A green Lewis development model," Metroeconomica, Wiley Blackwell, vol. 71(2), pages 431-448, May.
    19. Uehara, Takuro, 2013. "Ecological threshold and ecological economic threshold: Implications from an ecological economic model with adaptation," Ecological Economics, Elsevier, vol. 93(C), pages 374-384.
    20. Halkos, George & Psarianos, Iacovos, 2015. "The effect of including the environment in the neoclassical growth model," MPRA Paper 68050, University Library of Munich, Germany.
    21. Opschoor, J. (Hans) B., 1995. "Ecospace and the fall and rise of throughput intensity," Ecological Economics, Elsevier, vol. 15(2), pages 137-140, November.

    More about this item

    Keywords

    Biodiversity; Conservation; Economic growth; IUCN Red List; Population; Steady state economics;
    All these keywords.

    JEL classification:

    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20180039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.