IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20090065.html
   My bibliography  Save this paper

Efficiency and Collusion Neutrality of Solutions for Cooperative TU-Games

Author

Listed:
  • Rene van den Brink

    (VU University Amsterdam)

Abstract

This discussion paper resulted in a publication in 'Games and Economic Behavior', 2012, 76, 344-348. Three well-known solutions for cooperative TU-games are the Shapley value, the Banzhaf value and the equal division solution. In the literature various axiomatizations of these solutions can be found. Axiomatizations of the Shapley value often use efficiency which is not satisfied by the Banzhaf value. On the other hand, the Banzhaf value satisfies collusion neutrality which is not satisfied by the Shapley value. Both properties seem desirable. However, neither the Shapley value nor the Banzhaf value satisfy both. The equal division solution does satisfy both axioms and, moreover, together with symmetry these axioms characterize the equal division solution. Further, we show that there is no solution that satisfies efficiency, collusion neutrality and the null player property. Finally, we show that a solution satisfies efficiency, collusion neutrality and linearity if and only if there exist exogenous weights for the players such that in any game the worth of the 'grand coalition' is distributed proportional to these weights.

Suggested Citation

  • Rene van den Brink, 2009. "Efficiency and Collusion Neutrality of Solutions for Cooperative TU-Games," Tinbergen Institute Discussion Papers 09-065/1, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20090065
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/09065.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
    2. (*), Gerard van der Laan & RenÊ van den Brink, 1998. "Axiomatizations of the normalized Banzhaf value and the Shapley value," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 15(4), pages 567-582.
    3. Lehrer, E, 1988. "An Axiomatization of the Banzhaf Value," International Journal of Game Theory, Springer;Game Theory Society, vol. 17(2), pages 89-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koji Yokote & Takumi Kongo & Yukihiko Funaki, 2019. "Relationally equal treatment of equals and affine combinations of values for TU games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(2), pages 197-212, August.
    2. Takumi Kongo, 2018. "Effects of Players’ Nullification and Equal (Surplus) Division Values," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-14, March.
    3. Sylvain Béal & André Casajus & Frank Huettner & Eric Rémila & Philippe Solal, 2016. "Characterizations of weighted and equal division values," Theory and Decision, Springer, vol. 80(4), pages 649-667, April.
    4. Li, Wenzhong & Xu, Genjiu & van den Brink, René, 2024. "Sign properties and axiomatizations of the weighted division values," Journal of Mathematical Economics, Elsevier, vol. 112(C).
    5. Aymeric Lardon, 2012. "The γ-core in Cournot oligopoly TU-games with capacity constraints," Theory and Decision, Springer, vol. 72(3), pages 387-411, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "Discounted Tree Solutions," Working Papers hal-01377923, HAL.
    2. van den Brink, J.R. & van der Laan, G., 1999. "Potentials and Reduced Games for Share Functions," Other publications TiSEM bb166cb9-4f1c-4e52-b4b9-0, Tilburg University, School of Economics and Management.
    3. En-Cheng Chi & Yu-Hsien Liao, 2021. "Sustainable Usability Distribution Mechanisms under Multi-Attribute Sports Management Schemes," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
    4. van den Brink, J.R., 1999. "An Axiomatization of the Shapley Value Using a Fairness Property," Other publications TiSEM 0090365c-9bab-4367-b660-5, Tilburg University, School of Economics and Management.
    5. Yu-Hsien Liao, 2023. "Power Indices under Specific Multicriteria Status," Games, MDPI, vol. 14(4), pages 1-10, June.
    6. Gerard van der Laan & René van den Brink, 2002. "A Banzhaf share function for cooperative games in coalition structure," Theory and Decision, Springer, vol. 53(1), pages 61-86, August.
    7. van den Brink, Rene & van der Laan, Gerard, 2005. "A class of consistent share functions for games in coalition structure," Games and Economic Behavior, Elsevier, vol. 51(1), pages 193-212, April.
    8. Palestini, Arsen & Pignataro, Giuseppe, 2016. "A graph-based approach to inequality assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 65-78.
    9. Bendel, Dan & Haviv, Moshe, 2018. "Cooperation and sharing costs in a tandem queueing network," European Journal of Operational Research, Elsevier, vol. 271(3), pages 926-933.
    10. René van den Brink, 2002. "An axiomatization of the Shapley value using a fairness property," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(3), pages 309-319.
    11. Barua, Rana & Chakravarty, Satya R. & Roy, Sonali, 2006. "On the Coleman indices of voting power," European Journal of Operational Research, Elsevier, vol. 171(1), pages 273-289, May.
    12. Gerard van der Laan & René van den Brink, 1998. "Axiomatization of a class of share functions for n-person games," Theory and Decision, Springer, vol. 44(2), pages 117-148, April.
    13. Yan-An Hwang & Yu-Hsien Liao, 2010. "Consistency and dynamic approach of indexes," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 34(4), pages 679-694, April.
    14. Kamijo, Yoshio & Kongo, Takumi, 2012. "Whose deletion does not affect your payoff? The difference between the Shapley value, the egalitarian value, the solidarity value, and the Banzhaf value," European Journal of Operational Research, Elsevier, vol. 216(3), pages 638-646.
    15. René van den Brink, 2009. "Comparable Axiomatizations of the Myerson Value, the Restricted Banzhaf Value, Hierarchical Outcomes and the Average Tree Solution for Cycle-Free Graph Restricted Games," Tinbergen Institute Discussion Papers 09-108/1, Tinbergen Institute.
    16. Barua, Rana & Chakravarty, Satya R. & Sarkar, Palash, 2009. "Minimal-axiom characterizations of the Coleman and Banzhaf indices of voting power," Mathematical Social Sciences, Elsevier, vol. 58(3), pages 367-375, November.
    17. Xun-Feng Hu & Deng-Feng Li, 2021. "The Equal Surplus Division Value for Cooperative Games with a Level Structure," Group Decision and Negotiation, Springer, vol. 30(6), pages 1315-1341, December.
    18. Oishi, Takayuki & Nakayama, Mikio & Hokari, Toru & Funaki, Yukihiko, 2016. "Duality and anti-duality in TU games applied to solutions, axioms, and axiomatizations," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 44-53.
    19. Margarita Domènech & José Miguel Giménez & María Albina Puente, 2022. "Weak null, necessary defender and necessary detractor players: characterizations of the Banzhaf and the Shapley bisemivalues," Annals of Operations Research, Springer, vol. 318(2), pages 889-910, November.
    20. Peter Knudsen & Lars Østerdal, 2012. "Merging and splitting in cooperative games: some (im)possibility results," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(4), pages 763-774, November.

    More about this item

    Keywords

    Efficiency; Collusion neutrality; Shapley value; Banzhaf value; Equal division solution; Impossibility;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20090065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.