IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20060066.html
   My bibliography  Save this paper

Optimal Fourier Inversion in Semi-analytical Option Pricing

Author

Listed:
  • Roger Lord

    (Erasmus Universiteit Rotterdam, and Rabobank International)

  • Christian Kahl

    (University of Wuppertal, and ABN AMRO, London)

Abstract

At the time of writing this article, Fourier inversion is the computational method of choice for a fast and accurate calculation of plain vanilla option prices in models with an analytically available characteristic function. Shifting the contour of integration along the complex plane allows for different representations of the inverse Fourier integral. In this article, we present the optimal contour of the Fourier integral, taking into account numerical issues such as cancellation and explosion of the characteristic function. This allows for robust and fast option pricing for almost all levels of strikes and maturities.

Suggested Citation

  • Roger Lord & Christian Kahl, 2006. "Optimal Fourier Inversion in Semi-analytical Option Pricing," Tinbergen Institute Discussion Papers 06-066/2, Tinbergen Institute, revised 05 Jun 2007.
  • Handle: RePEc:tin:wpaper:20060066
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/06066.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    2. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    3. Gagan L. Choudhury & Ward Whitt, 1997. "Probabilistic Scaling for the Numerical Inversion of Nonprobability Transforms," INFORMS Journal on Computing, INFORMS, vol. 9(2), pages 175-184, May.
    4. Alan L. Lewis, 2001. "A Simple Option Formula for General Jump-Diffusion and other Exponential Levy Processes," Related articles explevy, Finance Press.
    5. Roger Lord & Christian Kahl, 2006. "Why the Rotation Count Algorithm works," Tinbergen Institute Discussion Papers 06-065/2, Tinbergen Institute.
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    7. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    8. Ai[dieresis]t-Sahalia, Yacine & Yu, Jialin, 2006. "Saddlepoint approximations for continuous-time Markov processes," Journal of Econometrics, Elsevier, vol. 134(2), pages 507-551, October.
    9. Gaspar, Raquel M., 2004. "General Quadratic Term Structures of Bond, Futures and Forward Prices," SSE/EFI Working Paper Series in Economics and Finance 559, Stockholm School of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    2. Kilin, Fiodar, 2006. "Accelerating the calibration of stochastic volatility models," MPRA Paper 2975, University Library of Munich, Germany, revised 22 Apr 2007.
    3. Alessandro Ramponi, 2016. "On a Transform Method for the Efficient Computation of Conditional V@R (and V@R) with Application to Loss Models with Jumps and Stochastic Volatility," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 575-596, June.
    4. Rehez Ahlip & Laurence A. F. Park & Ante Prodan, 2017. "Pricing currency options in the Heston/CIR double exponential jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, March.
    5. Stefan Gerhold & Christoph Gerstenecker & Arpad Pinter, 2019. "Moment explosions in the rough Heston model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 575-608, December.
    6. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    7. G. Mazzei & F. G. Bellora & J. A. Serur, 2021. "Delta Hedging with Transaction Costs: Dynamic Multiscale Strategy using Neural Nets," Papers 2109.12337, arXiv.org.
    8. Bravo, Jorge M. & Nunes, João Pedro Vidal, 2021. "Pricing longevity derivatives via Fourier transforms," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 81-97.
    9. van Haastrecht, Alexander & Lord, Roger & Pelsser, Antoon & Schrager, David, 2009. "Pricing long-dated insurance contracts with stochastic interest rates and stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 436-448, December.
    10. Sigurd Emil Rømer & Rolf Poulsen, 2020. "How Does the Volatility of Volatility Depend on Volatility?," Risks, MDPI, vol. 8(2), pages 1-18, June.
    11. Carlo Marinelli & Stefano D'Addona, 2024. "On the relative performance of some parametric and nonparametric estimators of option prices," Papers 2412.00135, arXiv.org.
    12. Stavros J. Sioutis, 2017. "Calibration and Filtering of Exponential L\'evy Option Pricing Models," Papers 1705.04780, arXiv.org.
    13. Martin Forde & Stefan Gerhold & Benjamin Smith, 2019. "Small-time, large-time and $H\to 0$ asymptotics for the Rough Heston model," Papers 1906.09034, arXiv.org, revised Oct 2020.
    14. Christian Bayer & Chiheb Ben Hammouda & Antonis Papapantoleon & Michael Samet & Ra'ul Tempone, 2024. "Quasi-Monte Carlo for Efficient Fourier Pricing of Multi-Asset Options," Papers 2403.02832, arXiv.org.
    15. Roger Lord & Christian Kahl, 2006. "Why the Rotation Count Algorithm works," Tinbergen Institute Discussion Papers 06-065/2, Tinbergen Institute.
    16. Pingping Zeng & Yue Kuen Kwok, 2016. "Pricing bounds and approximations for discrete arithmetic Asian options under time-changed Lévy processes," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1375-1391, September.
    17. Reza Doostaki & Mohammad Mehdi Hosseini, 2022. "Option Pricing by the Legendre Wavelets Method," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 749-773, February.
    18. Michael Samet & Christian Bayer & Chiheb Ben Hammouda & Antonis Papapantoleon & Ra'ul Tempone, 2022. "Optimal Damping with Hierarchical Adaptive Quadrature for Efficient Fourier Pricing of Multi-Asset Options in L\'evy Models," Papers 2203.08196, arXiv.org, revised Oct 2023.
    19. Fabien Le Floc'h, 2020. "Notes on the SWIFT method based on Shannon Wavelets for Option Pricing," Papers 2005.13252, arXiv.org.
    20. Gong, Xiao-li & Zhuang, Xin-tian, 2016. "Option pricing and hedging for optimized Lévy driven stochastic volatility models," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 118-127.
    21. François M. Quittard-Pinon & Rivo Randrianarivony, 2010. "Exchange Options when One Underlying Price Can Jump," Finance, Presses universitaires de Grenoble, vol. 31(1), pages 33-53.
    22. Gong, Xiaoli & Zhuang, Xintian, 2017. "Pricing foreign equity option under stochastic volatility tempered stable Lévy processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 83-93.
    23. Stefan Gerhold & Christoph Gerstenecker & Arpad Pinter, 2018. "Moment Explosions in the Rough Heston Model," Papers 1801.09458, arXiv.org, revised Apr 2018.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Cheng & Olivier Scaillet, 2002. "Linear-Quadratic Jump-Diffusion Modeling with Application to Stochastic Volatility," FAME Research Paper Series rp67, International Center for Financial Asset Management and Engineering.
    2. Roger Lord & Christian Kahl, 2006. "Why the Rotation Count Algorithm works," Tinbergen Institute Discussion Papers 06-065/2, Tinbergen Institute.
    3. Gerald H. L. Cheang & Len Patrick Dominic M. Garces, 2020. "Representation of Exchange Option Prices under Stochastic Volatility Jump-Diffusion Dynamics," Papers 2002.10202, arXiv.org.
    4. Pacati, Claudio & Pompa, Gabriele & Renò, Roberto, 2018. "Smiling twice: The Heston++ model," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 185-206.
    5. Eckhard Platen & Hardy Hulley, 2008. "Hedging for the Long Run," Research Paper Series 214, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Giorgia Callegaro & Lucio Fiorin & Martino Grasselli, 2019. "Quantization meets Fourier: a new technology for pricing options," Annals of Operations Research, Springer, vol. 282(1), pages 59-86, November.
    7. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Post-Print hal-02946146, HAL.
    8. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    9. Peng He, 2012. "Option Portfolio Value At Risk Using Monte Carlo Simulation Under A Risk Neutral Stochastic Implied Volatility Model," Global Journal of Business Research, The Institute for Business and Finance Research, vol. 6(5), pages 65-72.
    10. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    11. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    12. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    13. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    14. J. Lars Kirkby & Duy Nguyen, 2020. "Efficient Asian option pricing under regime switching jump diffusions and stochastic volatility models," Annals of Finance, Springer, vol. 16(3), pages 307-351, September.
    15. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    16. Carol Alexander & Leonardo Nogueira, 2007. "Model-free price hedge ratios for homogeneous claims on tradable assets," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 473-479.
    17. repec:hum:wpaper:sfb649dp2005-020 is not listed on IDEAS
    18. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    19. El-Khatib, Youssef & Goutte, Stephane & Makumbe, Zororo S. & Vives, Josep, 2023. "A hybrid stochastic volatility model in a Lévy market," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 220-235.
    20. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    21. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.

    More about this item

    Keywords

    option pricing; Fourier inversion; Carr-Madan; Heston; stochastic volatility; characteristic function; damping; saddlepoint approximations;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20060066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.