IDEAS home Printed from https://ideas.repec.org/a/cai/finpug/fina_311_0033.html
   My bibliography  Save this article

Exchange Options when One Underlying Price Can Jump

Author

Listed:
  • François M. Quittard-Pinon
  • Rivo Randrianarivony

Abstract

Many problems in life insurance and finance can be described in terms of exchange options. These contracts give their holders the right to exchange an asset against another one at some specified later date. Exchange options were introduced in the classical diffusive framework where an explicit formula can be obtained for the price. This article extends this framework by taking jumps into account. In the particular case where one asset follows a jump diffusion model, the present authors present two alternative approaches for the pricing of these exchange options. The first one is a complete probabilistic approach where a quasi-closed form formula can be obtained. The second one is based on the generalized Fourier transform approach. With the latter, this article gives a general methodology for pricing exchange options when one underlying can jump. This methodology can then be used in many areas such as the study of guaranteed funds in life insurance.

Suggested Citation

  • François M. Quittard-Pinon & Rivo Randrianarivony, 2010. "Exchange Options when One Underlying Price Can Jump," Finance, Presses universitaires de Grenoble, vol. 31(1), pages 33-53.
  • Handle: RePEc:cai:finpug:fina_311_0033
    as

    Download full text from publisher

    File URL: http://www.cairn.info/load_pdf.php?ID_ARTICLE=FINA_311_0033
    Download Restriction: free

    File URL: http://www.cairn.info/revue-finance-2010-1-page-33.htm
    Download Restriction: free
    ---><---

    References listed on IDEAS

    as
    1. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    2. Gerald Cheang & Carl Chiarella, 2011. "Exchange Options Under Jump-Diffusion Dynamics," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(3), pages 245-276.
    3. Roger Lord & Christian Kahl, 2006. "Optimal Fourier Inversion in Semi-analytical Option Pricing," Tinbergen Institute Discussion Papers 06-066/2, Tinbergen Institute, revised 05 Jun 2007.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Johnson, Shane A. & Tian, Yisong S., 2000. "Indexed executive stock options," Journal of Financial Economics, Elsevier, vol. 57(1), pages 35-64, July.
    6. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    7. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    8. José Fajardo & Ernesto Mordecki, 2006. "Pricing Derivatives On Two-Dimensional Lévy Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 185-197.
    9. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Len Patrick Dominic M. Garces & Gerald H. L. Cheang, 2021. "A Numerical Approach to Pricing Exchange Options under Stochastic Volatility and Jump-Diffusion Dynamics," Papers 2106.07362, arXiv.org.
    2. Len Patrick Dominic M. Garces & Gerald H. L. Cheang, 2020. "A Put-Call Transformation of the Exchange Option Problem under Stochastic Volatility and Jump Diffusion Dynamics," Papers 2002.10194, arXiv.org.
    3. Pasricha, Puneet & He, Xin-Jiang, 2022. "Skew-Brownian motion and pricing European exchange options," International Review of Financial Analysis, Elsevier, vol. 82(C).
    4. Len Patrick Dominic M. Garces & Gerald H. L. Cheang, 2021. "A numerical approach to pricing exchange options under stochastic volatility and jump-diffusion dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 21(12), pages 2025-2054, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    2. José Fajardo & Ernesto Mordecki, 2005. "Duality and Derivative Pricing with Time-Changed Lévy Processes," IBMEC RJ Economics Discussion Papers 2005-12, Economics Research Group, IBMEC Business School - Rio de Janeiro.
    3. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    4. Yongxin Yang & Yu Zheng & Timothy M. Hospedales, 2016. "Gated Neural Networks for Option Pricing: Rationality by Design," Papers 1609.07472, arXiv.org, revised Mar 2020.
    5. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org, revised Sep 2024.
    8. Fang, Fang & Oosterlee, Kees, 2008. "Pricing Early-Exercise and Discrete Barrier Options by Fourier-Cosine Series Expansions," MPRA Paper 9248, University Library of Munich, Germany.
    9. Wang, Guanying & Wang, Xingchun & Shao, Xinjian, 2022. "Exchange options for catastrophe risk management," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    10. Muroi, Yoshifumi & Suda, Shintaro, 2022. "Binomial tree method for option pricing: Discrete cosine transform approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 312-331.
    11. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    12. Eckhard Platen & Hardy Hulley, 2008. "Hedging for the Long Run," Research Paper Series 214, Quantitative Finance Research Centre, University of Technology, Sydney.
    13. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.
    14. Phelan, Carolyn E. & Marazzina, Daniele & Fusai, Gianluca & Germano, Guido, 2018. "Fluctuation identities with continuous monitoring and their application to the pricing of barrier options," European Journal of Operational Research, Elsevier, vol. 271(1), pages 210-223.
    15. Carolyn E. Phelan & Daniele Marazzina & Gianluca Fusai & Guido Germano, 2019. "Hilbert transform, spectral filters and option pricing," Annals of Operations Research, Springer, vol. 282(1), pages 273-298, November.
    16. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    17. Khaled Salhi, 2017. "Pricing European options and risk measurement under exponential Lévy models — a practical guide," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-36, June.
    18. Sun, Qi & Xu, Weidong, 2015. "Pricing foreign equity option with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 89-100.
    19. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.
    20. Jean-Philippe Aguilar & Jan Korbel & Nicolas Pesci, 2021. "On the Quantitative Properties of Some Market Models Involving Fractional Derivatives," Mathematics, MDPI, vol. 9(24), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cai:finpug:fina_311_0033. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jean-Baptiste de Vathaire (email available below). General contact details of provider: https://www.cairn.info/revue-finance.htm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.