IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20020002.html
   My bibliography  Save this paper

How Large is Average Economic Growth? Evidence from a Robust Method

Author

Listed:
  • H. Peter Boswijk

    (University of Amsterdam)

  • Philip Hans Franses

    (Erasmus University Rotterdam)

Abstract

This paper puts forward a method to estimate average economic growth, andits associated confidence bounds, which does not require a formal decision onpotential unit root properties. The method is based on the analysis of eitherdifference-stationary or trend-stationary time series models, implementing the robustbootstrapping procedure advocated in Romano and Wolf (2001). Simulation evidence indicatesthe practical relevance of the method. It is illustrated on quarterly post-war USindustrial production.

Suggested Citation

  • H. Peter Boswijk & Philip Hans Franses, 2002. "How Large is Average Economic Growth? Evidence from a Robust Method," Tinbergen Institute Discussion Papers 02-002/4, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20020002
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/02002.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter C.B. Phillips & Chin Chin Lee, 1996. "Efficiency Gains from Quasi-Differencing Under Nonstationarity," Cowles Foundation Discussion Papers 1134, Cowles Foundation for Research in Economics, Yale University.
    2. Romano, Joseph P & Wolf, Michael, 2001. "Subsampling Intervals in Autoregressive Models with Linear Time Trend," Econometrica, Econometric Society, vol. 69(5), pages 1283-1314, September.
    3. Timothy J. Vogelsang, 1998. "Trend Function Hypothesis Testing in the Presence of Serial Correlation," Econometrica, Econometric Society, vol. 66(1), pages 123-148, January.
    4. Eugene Canjels & Mark W. Watson, 1997. "Estimating Deterministic Trends In The Presence Of Serially Correlated Errors," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 184-200, May.
    5. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    6. Boswijk, Peter, 1993. "On the Formulation of Wald Tests on Long-Run Parameters," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 55(1), pages 137-144, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter C. B. Phillips & Zhijie Xiao, 1998. "A Primer on Unit Root Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 423-470, December.
    2. Perron, Pierre & Yabu, Tomoyoshi, 2009. "Estimating deterministic trends with an integrated or stationary noise component," Journal of Econometrics, Elsevier, vol. 151(1), pages 56-69, July.
    3. Boswijk, H. Peter & Jansson, Michael & Nielsen, Morten Ørregaard, 2015. "Improved likelihood ratio tests for cointegration rank in the VAR model," Journal of Econometrics, Elsevier, vol. 184(1), pages 97-110.
    4. Serena Ng & Timothy Vogelsang, 1999. "Forecasting Dynamic Time Series in the Presence of Deterministic Components," Boston College Working Papers in Economics 445, Boston College Department of Economics.
    5. H. Peter Boswijk & Philip Hans Franses, 2006. "Robust Inference on Average Economic Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(3), pages 345-370, June.
    6. Xu, Ke-Li, 2012. "Robustifying multivariate trend tests to nonstationary volatility," Journal of Econometrics, Elsevier, vol. 169(2), pages 147-154.
    7. Ernst, Matthew & Rodecker, Jared & Luvaga, Ebby & Alexander, Terence & Kliebenstein, James & MIRANOWSKI, JOHN A, 1999. "The Viability of Methane Production by Anaerobic Digestion on Iowa Swine Farms," ISU General Staff Papers 199910010700001329, Iowa State University, Department of Economics.
    8. Gadea Rivas, María Dolores & Gonzalo, Jesús, 2020. "Trends in distributional characteristics: Existence of global warming," Journal of Econometrics, Elsevier, vol. 214(1), pages 153-174.
    9. Manveer Kaur Mangat & Erhard Reschenhofer, 2020. "Frequency-Domain Evidence for Climate Change," Econometrics, MDPI, vol. 8(3), pages 1-15, July.
    10. Chihwa Kao & Jamie Emerson, 1998. "On the Estimation of a Linear Time Trend Regression with a One- Way Error Component Model in the Presence of Serially Correlated Errors," Econometrics 9805004, University Library of Munich, Germany.
    11. Pierre Perron & Eduardo Zorita & Timothy J. Vogelsang & Nasreen Nawaz, 2017. "Estimation and Inference of Linear Trend Slope Ratios With an Application to Global Temperature Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 640-667, September.
    12. Hyungsik Roger Moon & Peter C. B. Phillips, 2004. "GMM Estimation of Autoregressive Roots Near Unity with Panel Data," Econometrica, Econometric Society, vol. 72(2), pages 467-522, March.
    13. Vogelsang, Timothy J. & Franses, Philip Hans, 2005. "Testing for common deterministic trend slopes," Journal of Econometrics, Elsevier, vol. 126(1), pages 1-24, May.
    14. Phoebe Koundouri & Nikolaos Kourogenis, 2016. "On the Use of Quadratic Trends in Natural Resource Prices' Modeling," DEOS Working Papers 1608, Athens University of Economics and Business.
    15. Christis Katsouris, 2022. "Asymptotic Theory for Unit Root Moderate Deviations in Quantile Autoregressions and Predictive Regressions," Papers 2204.02073, arXiv.org, revised Aug 2023.
    16. Moon, Hyungsik R. & Phillips, Peter C.B., 2000. "Estimation Of Autoregressive Roots Near Unity Using Panel Data," Econometric Theory, Cambridge University Press, vol. 16(6), pages 927-997, December.
    17. Badi H. Baltagi & Chihwa Kao & Long Liu, 2014. "Test of Hypotheses in a Time Trend Panel Data Model with Serially Correlated Error Component Disturbances," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 33, pages 347-394, Emerald Group Publishing Limited.
    18. Mynbaev, Kairat, 2001. "The strengths and weaknesses of L2 approximable regressors," MPRA Paper 9056, University Library of Munich, Germany.
    19. Pierre Perron & Mototsugu Shintani & Tomoyoshi Yabu, 2017. "Testing for Flexible Nonlinear Trends with an Integrated or Stationary Noise Component," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(5), pages 822-850, October.
    20. Harvey David I & Leybourne Stephen J & Taylor A.M. Robert, 2006. "On Robust Trend Function Hypothesis Testing," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(1), pages 1-27, March.

    More about this item

    Keywords

    Growth; Unit root; Robust testing;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20020002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.